Category Archives: Coaching

A training logic in 4 basic steps.

In recent posts I’ve outlined some of the difficulties that runners face when training—a phenomenon I call the runner’s catch-22: people want to start running, but they either don’t get fast, or they become overtrained and their health deteriorates.

This is because running is relatively physiologically demanding: the minimum requirement for being able to run at all is far more rigorous than (say) for cycling. Most of the time, the reason people experience the Runner’s Catch-22 is because they’re physiologically not ready to train for their chosen sport. They need to develop more fitness on multiple levels before they’ll be genuinely ready to begin running.

In this post, I provide the basic concepts I use to develop a training plan. This is not just for runners, but for anyone that hopes to increase fitness in a safe, structured, and predictable way. My goal for this article is not just to provide a bird’s eye view of the “how-to,” but also to give the reader a framework to understand why it might not be a good idea to run some race or get into some other sport until certain requirements have been met. To do so, I divide this process into 4 basic steps: Training for (1) the person, (2) the sport, (3) the event, and (4) competition.

At the end of each step, I provide several questions whose answer will help you figure out the duration, frequency, and type of exercise that is best suited to helping you develop towards your athletic goals. (Keep in mind that in practice, these steps are far less discrete than I make them out to be.)

If you skip one step, you’ll have a very difficult time meeting the next. And the problem isn’t that you’re flaky, or that you’re not an athletic person, or that you’re not determined. No amount of determination will be enough to overcome the fundamental problem: That you skipped a step.

 Step 1. Training for the person:

 Even before you pick a sport to train for, it’s crucial to consider your overall situation: physical, physiological, psychological, nutritional, etc. If you’ve been sedentary all your life, hoping to suddenly be able to run and lift things over your shoulders will be damaging at best and impossible at worst.

Take a long, hard look at your particular body: all the muscle imbalances, digestion problems, moods, energy levels. Typically, any body is well-suited for its present activity levels: what, how long, and with what intensity you do whatever it is that you do. But the less activity you do (or that any part of your body does), the harder it is to change.

The best strategy is NOT, for example, to become a runner despite insulin resistance or a severe muscle imbalance. You’ll just hurt yourself in obvious and non-obvious ways. Instead, any training program should first address the constraint—muscle imbalance, insulin resistance, etc.—(and eliminate it) in order to bring the body back to a relative baseline of physical and physiological competency. What does that baseline look like? In a basic sense, when you go searching for odd pains, sorenesses, various symptoms of sickness, and you just can’t find any.

Keep in mind that while the process of doing so might include some “running” (for example), the fact that you’re “running” doesn’t mean that you’re actively training the running movement, or that you’re explicitly training for the running sport.

Ask these questions about yourself, and train according to the answers:

  1. At present, how (and how much) are you physiologically able to train?
  2. In the simplest terms, what is the biggest barrier to growth?
  3. Considering the answer to question (1), how can you train to remove it?

Note how question #3 is about training yourself out of the constraint, rather than mitigating the constraint through other means. NOT training yourself out of the need for orthotics (to the extent possible), means that it will be more difficult to get faster and perform more consistently. In systems terms:

“Any long-term solution must strengthen the ability of the system to shoulder its own burdens.”

This is how I start.

Step 2. Training for the sport:

 When I say sport in this context, I mean “the specific movement or movements required for participation in the sport.”

There are minimum basic requirements that must be met to even be able to participate in any given sport. (Training for proficiency at a sport comes later.) Any conceivable sport has minimum participation requirements in at least 5 domains of human motor expression: mobility, stability, skill, power, and endurance. However, for all sports, one or two key requirements reign above all others. For example:

  1. Deadlifting: The most salient requirement for deadlifting is more transparently understood as a mobility requirement: to perform a clean toe-touch. While standing upright with feet together and knees straight, to be able to reach down and tap your toes with the tips of your fingers without having to strain (read: while breathing continuously). If you can do this, it’s a good bet that you’re going to be able to consistently grow and develop in the deadlift.
  2. Running: The requirement for running is more transparently understood as a power requirement: To be able to accelerate into a cadence in the ballpark of 180 steps per minute (spm). This ensures that the critical neuromuscular processes necessary to efficiently maintain the running movement are developed enough to carry your weight.

(I say that a “salient requirement” is “more transparently understood as X” because if you really pick apart the toe touch or the ability to hit 180 spm, you’re going to find mobility, stability, skill, power, and endurance components for each.)

For some people, a cadence as low as 175 spm works just fine. I’ve yet to meet the person who hits peak efficiency below 170 spm. Keep in mind that a cadence of 180 spm is brisk as hell.

In order to meet that requirement, your joint stacking (the alignment of your ankles, knees, hips, and shoulders) has to be excellent—and has to stay excellent for the minimum amount of steps that it takes to accelerate into 180 spm. (And that’s just for starters. Maintaining a cadence of 180 spm for any kind of distance is much more difficult).

If you don’t have the requisite mobility in a given area (say, you have a hip restriction), movement becomes more awkward. That means you probably can’t produce stability: your abs can’t keep your upper body steady, making it difficult to control the arcs of motion of your arms and legs. So you can’t develop a high level of skill (the ability for your entire body to move in the best possible way given its structure and capabilities).

This means that it takes a lot more power to accelerate into a cadence of 180 spm. So, training for just about any event (short or long) becomes inordinately difficult—and as a result, you might just end up coming to the (wrong, wrong, wrong) conclusion that you’re “not athletic.”

A few guiding questions:

  1. What are the minimum requirements for your chosen sport (mobility, stability, skill, power, and endurance)?
  2. How (and how much) do you need to train to meet them?

 Step 3. Training for the event:

 I define event as: “the minimum planned volume of sports-specific activity.”

If the deadlifting competition starts at 100 lbs, then you better be able to meet the minimum requirement for deadlifting when loaded with a weight of 100 lbs. What does this mean? That you have to be able to perform the equivalent of a clean toe-touch—no straining—with 100 lbs on you.

It’s similar for running. If you want to run 100 yards, you have to be physiologically capable of accelerating into a cadence in the ballpark of 180 spm for 100 yards. If you want to run a marathon, you have to keep a cadence of 180 spm for the entire marathon.

This is why training for the event is s Step 3 in my list (and not Step 1). I’m well aware that a lot of people would like to pick from a menu and “choose” to run a marathon instead of a 5k because they “like” the marathon better. It doesn’t work that way. That would be like a novice “picking” to enter a deadlifting competition that starts at 250 lbs instead of 150 lbs, because they “like” 250 lbs more. For obvious reasons, you don’t do it.

What we don’t realize is that distance must be earned as surely as weight. Weight, is volume. Distance, is volume. They may not be the same kind of volume, but they’re both volume. They both deserve the same respect: they’ll both break you (in different ways) if you don’t train accordingly.

If you haven’t earned a certain distance (read: if you can’t physiologically meet the sports-specific requirement for the entire duration), pick a shorter distance. Here’s 2 questions to help you in this process: 

  1. What are the sports-specific requirement at the planned volume (duration, weight, speed, etc.)?
  2. How (and how much) do you need to train to meet them?

Step 4. Training for competition:

I define competitiveness or competence as “being able to exceed the sports-specific requirement for a particular event.”

It has nothing to do with being particularly good (that would be “elite-” or “semi-elite competitiveness.” It’s just about being better than the minimal physical and physiological requirements the event requires.

Training for competition, then, occurs when you can already meet the sports-specific requirement for the event, and now you want to exceed it. This is also a great way to gauge whether you’re ready for a more demanding event. Once you can hit 190 spm for 100 yards, you’re pretty sure you can train for 200 yards at 180 spm (and expect to make good gains). Same with deadlifting: if you are able to do 2 reps at 100 lbs, you can probably start training (say) for 1 rep at 150.

An important caveat: None of this means that the best, or the only way to train is to increase reps first, or increase power first (or whatever). Training is always strategic and multileveled, and you always approach it from as many angles as there are people in the world. The above only means that exceeding the sports-specific requirements at a given event is a decent gauge of whether you’re ready to train for a more challenging event.

  1. Can you exceed the event-specific requirements?
  2. How (and how much) do you need to train to exceed them for . . .
    • Greater competitiveness at the same event?
    • Participation in a more challenging event?

Final thoughts:

In future posts, I’ll break down these steps further and provide concrete examples of what they look like in training. I’ll discuss how to use the 4 steps together to design a more comprehensive training plan.

Athletic training: a game of physiological Jenga.

The 80-20 rule in athletic training* goes like this: train 80% of the time at a low intensity and 20% of the time at a high intensity, and you’ll achieve the best results.

Understandably, a lot of people—particularly us urbanites who are extremely busy and almost completely devoid of free time—might say: “but I only have a few hours to spare every week! I can’t afford to run slowly 80% of the time. How can I possibly expect to make gains?”

(Or something like that.)

This is exactly the wrong question. What running (a.k.a. training) at a low relative intensity—which people often refer to as “running slowly” does for the body is that it develops the aerobic system. (For most, but not all of us, training at a low relative intensity does indeed mean running slowly.) The aerobic system is extremely important: it mitigates oxidative stress (also known as chemical aging), it helps us recover from anaerobic efforts by processing lactate, and it keeps us well-fueled over the long-term by burning fats.

The aerobic system is the very foundation upon which any “gains” are built. In this sense, aerobic training increases what I like to call our “physiological capital,” that we can invest in high-intensity (anaerobic) training and develop what we typically refer to as “strength” and “power.”

To explain this relationship, I like to use the metaphor of a Jenga Tower.

Suppose that you have a particular strength or power goal: you want to run 6 minute miles. This is equivalent to wanting your Jenga tower to be 10 levels tall. But the problem is that you only have 20 bricks (each full level of a Jenga tower is 3 bricks).

The result is that you can only build 6 complete levels to your Jenga tower. You’re faced with a stark choice: you need to add levels to get to 10. But you don’t have any more bricks. So you’re forced to take from the lower levels. (This is essentially what strength training does). Your tower gets higher and higher—which is fine, until you pull out or lay a brick juust too quickly or a light breeze comes along—and the tower, which had grown increasingly unstable, plummets to the ground.

(You’ve just become injured.)

But there’s a way to add bricks to the base of your tower: aerobic training. This is what I mean by “increasing our physiological capital.” While aerobic training adds bricks at a pretty good rate, left to its own devices it turns your tower into a pyramid: the lowest level grows wider, until at some point  your body decides to start growing the next level.

That’s not a bad thing: a lot of ultrarunners (the healthy ones) have metabolisms that look like a shield volcano: gargantuan aerobic systems, but very little power. (If the height of the tower is how much power you possess, then the width of the base is how much distance you’re good for.)

Mauna_Kea_from_Mauna_Loa_Observatory,_Hawaii_-_20100913

That said, it’s not necessary to build a pyramid, when it’s a tower you want. Although it’s important that your tower be stable, that’s about it: most of us are not trying to be an ultrarunner, nor do we have to be. All you really need is a few extra bricks around your base—enough to plug any holes you may have created, and to be able to add a couple of levels. Rinse and repeat.

A quick disclaimer: the body doesn’t convert the actual aerobic machinery into anaerobic machinery in the way that a naïve reading of the “Jenga metaphor” would suggest: the brick that you take from the base is not literally the same one you put on top of the tower. However, the reason I like the Jenga metaphor is because the stress and wear-and-tear incurred by anaerobic work (compounded by the fact that it is the job of the aerobic system to absorb those stresses), means that the process of adding strength and power basically always means carving into your aerobic base.

How often do you switch from adding bricks to adding levels? If you’re looking to run an endurance race, for example, then you need a very wide aerobic base.

Supposing that you want to develop some all-around fitness, a basic (but certainly not universally applicable) recipe is this:

  1. For 2 weeks, train primarily easy 95-100% of your training.
  2. The next 2 weeks, train at a moderate-to-high intensity 35-40% of the time.
  3. Rinse and repeat.

This process will give your body two weeks to recover well from strength training (read: replenish the bricks you took from the base, and add a few more). Two weeks of low-intensity training isn’t really long enough to start losing high-end fitness: the small amount of strength training 0-5% during the easy weeks is more than enough to maintain your gains. But when you’ve cycled through this process several times is when you’ll really start to see your gains stack up.

Building and maintaining an aerobic base, and making sure that our strength gains are well-buttressed by wide lower levels of our metabolic tower, is non-negotiable. Some of us are lucky: for good or ill we spent our formative years playing at the beach, kicking around a soccer ball, or going hiking with our oudoorsy parents. This person (unbeknownst to them) has been stacking more and more bricks around the base their fledgling tower, broadening their aerobic base until they’ve accrued what seems like a limitless amount of bricks.

Others never had that chance.

But not having had that chance doesn’t mean we have any more of a choice. Sometimes, the unconscionable choice—running “slowly” despite the horrible feeling that time is slipping away and we’re not getting any faster (forgetting the fact that our pool of bricks is growing ever larger)—is also the right one. That choice will put us in a position from which we can develop speed . . . and get to keep it.


*NOT the Pareto Principle.

 

 

The Overlooked Mystery of Movement, Unlocked: My experience with the Pose Method Sports Technique Specialist Certification

Movement isn’t generated by muscles.

This is the central theoretical point made by Dr. Nicholas Romanov, founder of The Pose Method, when teaching movement. He points out that the similarities between all the different human movements—swimming, walking, pitching, kicking—run deep, while the differences (which we naïvely believe are the larger part of the equation) are actually astonishingly superficial.

Dr. Romanov makes a critical distinction between movement—the displacement of our body in space (or of another object, such as a ball)—and repositioning (moving arms, hands, legs or shifting our torso around while remaining in the same spot).

Muscles allow us to reposition, sometimes at great speed. But in order to transform repositioning into movement, we need to add another critically important (and almost universally overlooked) component to the recipe: gravity.

Similar to how animal physiology evolved with the assumption that oxygen is a constant, the movement mechanics of all animals evolved with another assumption: that gravity is another constant, which we harness for movement as we harness oxygen for life.

Leonardo Da Vinci wrote: “Motion is created by the destruction of balance.”

What happens when we destroy balance—when we lean juust enough in some direction (say, forwards)? Gravity accelerates us quickly enough that we reflexively throw our foot down to catch ourselves in an attempt to find balance anew. And what if instead of stopping, we let ourselves continue falling? We’ll find that we need to throw down another foot, and another, and another. At that point, we’re running.

All movement begins with the destruction of balance, but there are an innumerable amount of movements that the body can make. The difference between each and every one of them is which position we initiate from.

But how about in throwing? Isn’t it quite clear that we “generate power” from the hips? Let’s see.

We all know the throwing stance: ball in hand at the level of the ear, elbow at ninety degrees and square with the shoulder, back foot pointing to the side and front foot pointed forward. But there’s more. We rotate our shoulders so that they are aligned in the direction of the throw.

quarterback

Our upper body is essentially twisted into a spring, ready to snap back around as soon as we release the potential energy we’ve created.

But in order for this to become a throw, there is one exceptionally important component missing—an action called unweighing. If there’s any shared movement between all sports, this is it. Unweighing is essentially an explosive shoulder shrug—the idea behind it being that initially it’s much easier to reposition a structure like the shoulders (which aren’t weighed down by something on top of them), and then follow in sequence with torso, hips, legs, and feet (which are).

Unweighing happens in a big way in this video of Drew Storen’s pitching mechanics, as well as in just about any video of Usain Bolt.

Once you’ve unweighed, your shoulders are flying. For all intents and purposes, they’re suspended in air. The abdomen isn’t supporting the shoulders anymore. The spine is free to extend, and accelerate the abdomen into the air. Your hips, knees, ankles, and feet are free to move.

Unweighing is the necessary first step to any human movement. While movement is still possible without active unweighing, performance suffers.

But remember, unweighing isn’t the only component: throwing involves a forward step—a momentary loss of balance. With it, gravity gets the perfect opportunity to accelerate our body. The bigger the step, the bigger the acceleration.

“The object which moves most rapidly is farthest from its balance.”

—Leonardo Da Vinci

Movement is in no way “accidental” or “passive” just because gravity is involved: A bigger “fall” in running or throwing means that the appropriate muscles have to contract more quickly in order to negotiate the greater acceleration and help the body travel to another balanced position—a second Pose.

When that foot lands, our leg stops moving abruptly. Milliseconds later, our hips, shoulders, elbow and wrist each come to a stop—and all that kinetic energy gets transferred into the ball, which continues to travel at great speed.

In throwing as in running (as in jumping, punching, and even swimming), every athletic movement is instigated by a loss of balance.

Let’s explicitly state the counterintuitive elegance of Dr. Romanov’s Pose theory: the variety of athletic movements isn’t due to a different “action” or “effort,” but rather that the initial position—the Pose that we lose balance from—and the ending position—the Pose that we travel to in order to regain it—are different.

For any movement, exactly two things happen between Poses: acceleration in some direction due to the force of gravity, and our single voluntary contribution—our only action: an explosive “unweighing” that allows the body to quickly (and reflexively) reposition its parts in its quest to return to balance.

Implicit in Pose theory is this notion: the best way to teach movement isn’t by teaching movement. The way to teach movement is by teaching the initial and ending Pose, teaching how to unweigh, and finally by teaching the conscious mind to let the body do its thing—to get the hell out of its way.

As Bruce Lee once said: “. . .and when there is an opportunity, I don’t hit. It hits, all by itself.”

New to fitness? Start with some human-specific training.

Most of you reading this have probably been exposed to the terms “training specificity” or “sports-specific training.” This means that training shouldn’t be random—it should always intend to bolster some specific aspect of athletic performance.

But a lot of people at the gym or jogging on the street—or even purportedly training for some athletic event (I’m talking to my 20-year self here)—are far from anything resembling sports-specific training. When you look at the structure of their training, you’ll find no rhyme or reason for it other than it being some canned and mass-produced (and watered-down) version the training program for some or another elite athlete . . . if that.

Recreational runners aren’t mini-elites. In terms of exercise prescription, they’re a different animal altogether. Their training doesn’t account for their poor aerobic base, or that pelvic floor dysfunction, or that knee valgus collapse.

Deep underlying problems are left unaddressed (and alternately, great strengths are being passed over).

I see this all the time: just about every basic running training program that I see (with some notable exceptions such as The Pose Method) gives you a particular combination of easy runs, intervals, long runs, and strength training. Where’s the mobility component? Where’s the stability training? Where’s the skill development?

You could say that these programs don’t include stability, mobility and skill development because they aren’t aware of the client’s capabilities—but they aren’t aware of the state of their aerobic base either (or any muscle imbalances that could injure the body during power training, for that matter).

The fact that just about every running training program (for beginners!) neglects these basic components, while these same components form the foundation and daily warm-up session for competitive athletes is nothing short of criminal.

I believe that this double standard is a big contributor to making beginners stay beginners (and the competitive stay competitive).

My frustration with this topic stems from mistakes that I’ve made in my own training—and frustration with the fact that nobody ever took me aside and told me “hey dude, this is the first and most important thing you should know.” I had to go looking for this stuff because I realized that my workouts were missing a basic logic.

Which brings us to the question: So what comes first?

Let’s take it from Gray Cook, movement expert and founder of Functional Movement Systems (FMS): “We need to do mobility first because that’s the way we got here. We didn’t show up doing side planks in the crib. We had mobility.”

In order to be truly effective, any basic training program for general fitness has to hit all of the following steps—but especially the first (read: foundational) ones in a basic, general way.

  1. Mobility
  2. Stability
  3. Skill
  4. Strength
  5. Power
  6. Endurance

The differences between these may seem too subtle to matter, but subtlety has always been the province of success.

Each of these steps is going to get its own post. Understanding these steps isn’t just in describing what endurance or strength means, or how to go about training mobility or stability, but why skill comes before strength, or endurance after power.

For a hint of this, look at Gray Cook’s words: it doesn’t just happen to be a good idea for mobility to be the first thing we train (or the first component of our warm-up). That’s how it works because that’s the sequence in which we develop lifelong movement competence as humans.

As you’ll see in future posts, the implications are deep, and they reach across the different perspectives from which we can understand the body—temporal (developmental), metabolic, neurological, mechanical, etc.

These issues don’t just make for interesting discussions. These symmetries, processes, and logics (and how well we attend to them and understand them) often account for the difference between silver and gold.

Ben Greenfield Fitness on Exercise and The Menstrual Cycle

I just read an excellent blog post over at BenGreenfieldFitness.com, on the topic of the menstrual cycle, how it affects athletic output, and how female athletes should harness it to positively influence training. It’s great stuff. Click on the link if you’re interested.

I’m growing more and more interested in this topic for two reasons: (1) hormones are one of the two main interfaces between the brain and the body (the peripheral nervous system being the other), and (2) there’s very little consideration given in exercise prescription to how hormonal cycles in women differ from men, and how that can affect athletic output, injury rates, and training routines. Although there’s plenty of science on the matter out there, I very rarely see it consciously incorporated into women’s training programs. It’s mostly left to women fitness enthusiasts (and not their coaches) to study this colossally important cycle and then apply the knowledge themselves.

That’s a problem. Why does it exist? I’m sure the reasons are at least as sociopolitical and structural as they are about the science and women’s physiology. Asking why this isn’t in EVERY SINGLE TEXTBOOK AND EVERY SINGLE DISCUSSION on periodization of training is just as important as discussing what is missing.

Ben Greenfield also discussed the topic in this podcast. I haven’t looked at it yet, but I’m sure it’s got some great info. I’ll probably address this topic initially in two blog posts: (1) what the science is and what is being done with it, and (2) where the science should go and what we should do with what we’ve studied.

Cool. Guess that’s it!

Athletics’ dysfunctional marriage: can injury prevention be reconciled with performance training?

Show me a runner. You’re showing me someone who’s run through pain. Isn’t that true? When you’ve been in the middle of a long run and felt the beginnings of a shin splint, you’re finally in the club. But we can’t stop now! There’s miles to be logged. Our marathon training plan says 60 miles a week, and this long run is 17.

We’ve faced with having to ask the dreaded question: should I choose to continue this training, or should I choose to prevent the injury?

Continue reading Athletics’ dysfunctional marriage: can injury prevention be reconciled with performance training?