Verticality, Part I: Basics of uphill trail running

“Verticality” is a term I’ve heard loosely thrown around in rock climbing and mountaineering circles. It means, well, just about exactly what you’d expect it to: sometimes it describes the sheerness (a.k.a. the slope) of a rock face, and sometimes it describes the skill of being able to interact with that face.

I use “verticality” in the second sense, to think about trailrunning.

I’m currently training for the McDonald Forest 50K trail run here in Oregon, which has a ridiculous amount of elevation change—for a road runner like me. My challenge, then, is to learn how to interact with the variables that make the typical trail different from the typical road. These are:

  • Slope (Uphill vs. Downhill).
  • Variability (rugged terrain, rocks, roots, mud, etc.)

In other words, I’m not training “endurance” or “power” for this trail race. I can’t really expand them significantly when so little time is left before the event. But what I can develop, of course, is verticality.

Particularly in trail races, I think that a person’s ability to interact with the many variables present in trailrunning is a much bigger determinant for success than, say, power. While power is still very important, our ability to interact with the trail determines whether we get to use it or not.

Essentially, the added variables in play means that the skilled runner—the runner whose body understands those variables and knows how to use them—will see their physiological advantage magnified over the runner who doesn’t. (I use the term “advantage” because skilled runners also tend to be both more physiologically powerful and more experienced in different slopes and terrains than unskilled runners, because they usually have spent more time running).

Trailrunning is an immense can of worm, so I’ll discuss each part in a separate post. In this one, I’ll deal solely with uphill running.

The typical runner facilitates uphill running by bending forward at the waist much like one does during acceleration.

This seems like a pretty good idea on the surface: by leaning forward, you are able to cruise up the hill faster without working harder. But there’s a trade-off: you compromise the stacking of your ankle, hip, shoulder, and head. Specifically, this means that you put a lot of strain on your lower back, similar to the strain a person experiences when they bend from the waist to pick up a heavy object.

When you compound this across thousands of steps, and the lower back becomes significantly tired, the hamstrings have to step in to provide hip stability (say). Without going into the details, this essentially creates a snowball effect that increases the difficulty of running, and therefore the likelihood of injury.

In a popular video, ultrarunning god Scott Jurek explains how one of the key features of correct uphill running is to keep your hips in neutral position, or correctly stacked over your shoulders. This might lead us to say that the key is to lean forward “from the ankle,” like many suggest. That’s somewhat true, but doesn’t really describe the best strategy for running uphill.

Looking at elite ultrarunners like Kilian Jornet (2:35) and Dakota Jones (1:15), we can see that their strategy for climbing steep slopes is by pulling their foot from the ground and back under their hips very quickly. An easy way to observe the effect of this pulling action is by seeing just how much they raise their thigh. Even though they’re covering comparatively little horizontal distance, their foot has to come up quickly enough that their thigh gets almost parallel with the horizon before their foot lands on the ground.

UPDATE: The raising of the thigh—also known as “thigh spread,” is just an obvious marker. For running to be effective, the focus must be on pulling the foot from the ground back under their hips. While this is fodder for another article, let me just say that one of the reasons runners should focus on the foot and not the thigh is because if we control the movement of the foot, we also control the movement of the calf and thigh (but if we control the movement of the thigh, we do not necessarily control the movement of the foot or calf).

kilian dakota

Instead of “powering up” the trail, skilled runners “fall up” the trail in the very same way that during a lunge someone falls further forward by increasing the flexion of their swing leg. (A lunge, of course, doesn’t have the same “pulling” action as running—the foot of the swing leg moves ahead of the center of gravity, instead of staying under it.) But the point is that in both movements, the degree of flexion of the swing leg determines the amount of distance covered.

While the hip extension of the back (stance) leg is greater in a deeper lunge or a higher step, a greater flexion of the swing leg is actually what accomplishes this. (In running, this means “pulling” the foot; in the lunge this means reaching forward). As far as the back leg is concerned, the difference between a shallow lunge and a deep lunge is not in ankle or knee extension—both shallow and deep, the stance leg knee is in near-full extension and the ankle is close to neutral. As far as the stance leg is concerned, the difference is in the degree of hip extension.

Lunge - fall

Like for the lunge, in uphill running it’s not the prerogative of the back hip to extend as much as it wants, whenever it wants. If the front leg remains relatively more extended during the stride, it’s impossible to (1) open up the compass, or to (2) lean forward “from the ankle” as I discussed above: the slope gets in the way. But if (3) the swing foot is pulled faster from the ground, it can cover a larger distance.

Uphill - Fall

A simpler way to say this is that hip extension of the stance leg occurs in function of flexion of the swing leg.

The key to uphill running, then, is (a) to lean forward only insofar joint stacking isn’t compromised, (b) to pull the foot up faster, and (c) to maintain stride rate, as Dr. Nicholas Romanov (founder of the Pose Method) points out in an excellent video. (Maintaining stride rate is a result of a quick and efficient pull).

Of course, this brings an additional level to the discussion: pulling the foot faster means that the runner has to be that much more powerful, or at least have that much more of a conditioned pull than someone who runs on more moderate slopes.

But if the degree of pull of the swing foot gets to determine how much hip extension of the stance leg you get, this means that the rule for uphill running also applies to regular running. The faster person on level ground will also be the faster person on the uphill.

One final point: the slope doesn’t lend importance to the pull. It magnifies it. (Put another way, the same rules apply to a slope of .003 percent than to a slope of 15. The magnitude of the slope determines how apparent they are.) The greater the slope, the more powerful a pull you need to be able to move continuously, smoothly, and successfully up it.

This has dire implications for the runner who has trained under the paradigm that “pushing”with the stance leg is the primary form of propulsion: insofar as this is the case, the degree of effort it takes to run uphill will be that much greater. The greater the slope, the faster the pulling runner will pull ahead* of the pushing runner.

(What does the pulling runner have to do to win an argument about running physics? Find a hill.)


*Pun intended.

PS. Here’s a great article that discusses several pulling drills!

PPS. Here’s another great video by Dr. Romanov discussing foot-strengthening exercises for uphill running!

The Running gait, Part 2: Movement logic and The Pose Method

It seems to me that nobody can quite agree on exactly what is happening during the running gait.

The running gait is characterized by an alternation of support: at one point, your body is supported on the ground by your left leg, then you’re suspended in the air, and then it’s supported by your right leg (and then subsequently back to your left leg). It’s how you get from these support phases—also called “stance phases”—to being suspended (and back again) that people vehemently disagree on.

Many in the running community say that the motive force of running is produced by a strong push of the leg muscles against the ground. But Dr. Nicholas Romanov of The Pose Method suggests a different—and in my opinion, far more parsimonious—interpretation of what happens: instead of “pushing,” the body accelerates its center of gravity by repositioning itself relative to the point of support (the foot on the ground).

UPDATE # 1: All repositioning occurs due to muscle activity, and the speed and effectiveness with which the body (or a specific body part) can reposition is commensurate to the power of the relevant muscles.

We typically think of “acceleration” as “the thing that makes cars go from 0 to 60.” But even a slight weight shift is an acceleration. When the slowest snail takes one tiny step, it’s accelerating it’s body (and then promptly decelerating it). Similarly, a slight weight shift constitutes an acceleration of the part of the body that moved. A greater weight shift is an even bigger acceleration. If you string together enough tiny weight shifts (or big ones) in a close enough sequence, you get a really big acceleration!

In this post, I’ll argue that the most logical way of producing a human movement (and that of any segmented organism) is by shifting the most easily-movable part first.

If you look at the body from a design perspective, you’ll see that it’s a stack of different parts (feet, calves, thighs, hips, etc.), all separated by joints. In the standing posture, each of these parts provides support for the part above it, much like a stack of bricks. But the difference is that the body’s joints let each brick move semi-independently of all the other bricks. The question, then, isn’t “how do we run?” It’s waaay more basic than that. The question is: to get from A to B (over and over again), how does a stack of things have to move?bricks.jpg

You could simply lift the bottom brick—along with all the bricks on top of it—and move it that way. That’s not particularly convenient, though: it requires a lot of energy in very little time. But there’s another way: start from the top brick. That way you only have to move one brick at a time, shifting bricks in quick succession.

This is the logic that your body (and the body of any segmented organism) uses to move. If you’re standing on two feet and want to lift your left foot, you don’t start by lifting your foot. You start by shifting your weight—starting by your shoulders, and moving down the body—onto your right leg, effectively removing all the weight off your left foot.

(This takes all the top “bricks” off the foot first.)

I’ve just described to you a process intrinsic to any human movement, which Dr. Romanov calls unweighing. This is the simplest process: if you want to move a limb, you first shift all the weight you can off it first, and then you move that limb. What makes Dr. Romanov’s theory parsimonious is that you need very few ideas to successfully describe human movement as a whole. Case in point: the movement of the entire body is simply a large-scale version of unweighing.

If you want to move, you create a forward weight shift in the direction you want to go. This effectively takes your weight off your feet and puts it in the space ahead of you.

Let’s talk running. During stance, one leg has the entire “stack of bricks” on top of it, and the other one is suspended in air (and already traveling forward), with nothing pulling it to the ground but its own weight. (UPDATE #2: In terminal swing, that leg actively reaches for the ground in order to provide new support). But when one leg is in early stance and midstance, which do you move? Do you push with the leg that has all the bricks on top of it, or do you move the foot with nothing holding it in place—the “topmost” brick?Running bricks

That’s the question Dr. Romanov answers with the Pull. The Pull describes the process of getting the back leg off the ground, and recycling it forward to produce the next step. But part of the hidden importance of the Pull is that it is also a weight shift: whereas in the previous weight shift you drifted your shoulders a few inches to one side, in the Pull, you aid the elastic recoil of your tendons in pulling your foot from the ground. This brings the mass of your entire leg ahead of the foot currently supporting you on the ground.

Galen Mo
Like this, but not as effectively (and with far less flair).

In a proper landing, your foot will touch the ground just ahead of your hips, torso, and head. There’s a slight deceleration due to the foot’s contact with the ground, but the body as a whole continues to travel forward, vaulting over the support leg. If the leg that just came off the ground—the “Pull” leg—moves forward fast enough, the body can add more of its mass ahead of the point of support.

We already know that a small weight shift—drifting the shoulder to one side—causes you to move (read: accelerate) slightly to that side. Now imagine how much more acceleration you can create by pulling the leg and moving its mass ahead of the body.

Mainstream thought questions whether this kind of weight shift can create enough momentum to offset wind resistance, plus the braking effect of landing, plus any power leaks that the person might have. The argument goes that if it can’t, the “pushing” argument is more likely the correct one.

But I hope I’ve convinced you that the best way to move a stack of things is by moving one part at a time in order to tip the stack in the direction you want (and then continue to move the parts in order to create more acceleration). Supposing that this—the best way to move a stack of things—somehow wasn’t enough to overcome wind resistance and the braking effect of landing, there’s no way that you could do it with pushing (a.k.a. moving from the bottom brick) because, well, it isn’t as effective.

So if the question of running is “what is the best way to offset wind resistance and braking?” the answer would still be to reposition the most easily movable limb in order to create a weight shift to move the body in the desired direction.


Read my initial take on the Pose Method here, and how the Pose Method applies to all other sports here.