Tag Archives: The Pose Method

The role of downforce in forward motion.

There are two main camps in the argument of exactly how we manage to move forward as we run. The traditional camp says that the body uses the muscles to “push against the ground.” The other—constituted almost solely by Dr. Nicholas Romanov’s Pose Method—proposes that we move forward thanks to the action of gravity on our bodies.

This second camp suggests that what the muscles do—their primary function—is to convert the downward force of gravity into net forward movement.

But how is it possible that the body can convert a downward force into horizontal movement?

Part of the answer lies in the fact that the running movement isn’t really horizontal. It consists of a wave-like movement of the hips and torso—an oscillation—that only seems to be a straight line if we’ve zoomed out far enough. If your model (incorrectly) assumes that the body is trying to convert a downward force into a force that travels on a horizontal linear vector, you’ll end up quite confused.

(But that’s a discussion for a different post.)

Let’s get to the issue I want to talk about: Proponents of the idea that runners “push off” often understand Dr. Romanov’s argument—that gravity is the “driving force”—as claiming that gravity provides “free” or “additional” energy (a.k.a. net energy) if we adopt a certain technique.

I believe that’s a rather shallow misrepresentation of what Dr. Romanov’s Pose Method has  actually suggested. Pose’s main message regarding the action of gravity in running is quite a bit more profound. To explain why this is—and what I believe the main message of Pose is—let’s abstract away from mentions of “gravity” for a second and talk about a more general concept: downforce.

Instead of runners, let’s look at race cars. What are the necessary factors in making them go?

First and foremost, a race car needs a powerful engine. Without an engine, it’s going nowhere. But an engine is not enough. As any connoisseur of modern racing will tell you, there came a point in the evolution of car racing in which the engine’s ability to turn the wheels exceeded the ability of the best tires to grip the best track.

Why? Engine power eventually exceeded the car’s weight (defined as “how much force is generated as gravity accelerates its mass towards the ground”), and the capacity of the tires and the track to covert that weight into friction.

This reveals an important truth about the car: the engine actually isn’t for moving the car forward. The function of the engine is to spin the wheels. (While this results in driving the car forward, actual forward motion only occurs insofar as the power with which the engine spins the wheels coincides with the extent to which gravity keeps the car on the track.)

At this point, the only way to achieve greater speed was for engineers to somehow find a way to add to the downward force that gravity exerts on the car. How did they solve this dilemma? By adding the ugly inverted wings we now see on the back of every Formula 1 and drag racer: spoilers.

By redirecting the flow of air upwards at the tail end of the car, spoilers create another significant downforce. This reveals that strictly speaking, it isn’t gravity that allows race cars to move forward. It’s downforce. (Gravity just happens to be the quintessential downforce on Earth.)  But the point is this: no downforce, no movement.

Let me spell out the implications in the strongest possible terms. Muscle power is NOT the driving force. It is the intermediary force. It converts a downforce into a quasi-horizontal oscillation. The driving force—the thing that ends up as movement—is gravity. Muscle power (a.k.a. metabolic energy expenditure through muscle use) is what lets gravity end up as movement. Gravity could provide zero net energy (zip, nada) and still it makes sense to call it the “driving force.”

The important question to ask about running isn’t really whether one running technique “uses” gravity to run—all running necessarily does so. Let me be even more specific: all overground movement is a result of expending energy in order to convert some downforce into a quasi-horizontal movement. The degree to which movement occurs is commensurate to the degree to which the organism/machine is harnessing downforce in real time.

Running according to the tenets of The Pose Method gets you “free energy” from gravity in the same sense that a car that never fishtails also gets “free energy.” In other words, Pose offers the cheapest way, all things considered—speed, agility, endurance, resilience, performance consistency, performance frequency, metabolic flexibility, recovery, longevity, etc.—to convert as much downforce as possible into overground movement. The critical observation offered by The Pose Method, then, is about how the body’s “engine”—its musculature and various systems—work best to harness the force of gravity to produce forward motion.

If the car weighs too much for the engine, it stays put. If engine power exceeds grip, it spins out. In other words, car’s absolute theoretical speed limit on Earth isn’t set by the power of the engine, the design and engineering of the transmission, or the materials it’s composed of. The maximum horizontal speed that any object can achieve is set by the theoretical limit to which it can harness the few downforces available to it on Earth. Once the car’s power and engineering causes it to reach speeds at which it is impossible to stop the air around it from supercavitating (creating a vacuum around the skin of the car), no aero kit will allow it to go faster, and no further improvements to the drivetrain will do it any good.

Of course, unlike race cars, the human body is not set up to use wind as a downforce—and we couldn’t run fast enough to make it matter anyway. Our running speed is a function of our ability to harness one downforce: gravity.

For a runner, improving efficiency by harnessing the force of gravity can mean 2 things:

  1. Removing power leaks and other muscle use that does not contribute to harnessing gravity. (The race car example would be to swap in better and better parts, and to make sure that you don’t throttle up enough to drift the car).
  2. Increasing top running speed: a runner with good form (a.k.a a runner whose movements and stances maximize the harnessing of downforce) can do so to a greater degree—in other words go faster—than an identical runner whose movements and postures do not effectively harness downforce.

Note that #2 is a hidden efficiency: it only reveals itself insofar as the runner goes faster. Both the inefficient runner and the efficient runner may be using a very similar amount of energy at lower speeds, but only the more efficient runner can get to a faster speed.

Pit my Toyota Tacoma against a Ferrari. Both would perform quite similarly at lower speeds and wide turning radii. If you ask both of us to make a wide sweeping turn at 60 miles an hour, we’d perform almost identically. You’d say “Whoa! Correcting for weight, they’re equally as efficient!”

But this observation only holds at lower speeds. If you increase the speed to 160 mph and tighten the curve, my Tacoma would start to spin out or come off the track, forcing me to reduce my speed. In other words, even if you doubled the horsepower on my Tacoma, I wouldn’t be able to match the Ferrari because of its stiffer suspension, better tires, lower profile, and aerodynamic design (in other words, it’s much better at harnessing downforce).

I believe that the discussion of “saving energy through the use of gravity” is meant to help us recognize—for starters—that we move forward only to the degree that friction and muscle power meet. It also has a few other implications (to put it mildly), but those are best left for another post.


 

 

UPDATE: Check out what I’ve written on The Pose Method:

About Pose theory of movement in running.

About Pose theory of movement in all sports.

About the “unweighing” principle of Pose theory.

The Running gait, Part 2: Movement logic and The Pose Method

It seems to me that nobody can quite agree on exactly what is happening during the running gait.

The running gait is characterized by an alternation of support: at one point, your body is supported on the ground by your left leg, then you’re suspended in the air, and then it’s supported by your right leg (and then subsequently back to your left leg). It’s how you get from these support phases—also called “stance phases”—to being suspended (and back again) that people vehemently disagree on.

Many in the running community say that the motive force of running is produced by a strong push of the leg muscles against the ground. But Dr. Nicholas Romanov of The Pose Method suggests a different—and in my opinion, far more parsimonious—interpretation of what happens: instead of “pushing,” the body accelerates its center of gravity by repositioning itself relative to the point of support (the foot on the ground).

UPDATE # 1: All repositioning occurs due to muscle activity, and the speed and effectiveness with which the body (or a specific body part) can reposition is commensurate to the power of the relevant muscles.

We typically think of “acceleration” as “the thing that makes cars go from 0 to 60.” But even a slight weight shift is an acceleration. When the slowest snail takes one tiny step, it’s accelerating it’s body (and then promptly decelerating it). Similarly, a slight weight shift constitutes an acceleration of the part of the body that moved. A greater weight shift is an even bigger acceleration. If you string together enough tiny weight shifts (or big ones) in a close enough sequence, you get a really big acceleration!

In this post, I’ll argue that the most logical way of producing a human movement (and that of any segmented organism) is by shifting the most easily-movable part first.

If you look at the body from a design perspective, you’ll see that it’s a stack of different parts (feet, calves, thighs, hips, etc.), all separated by joints. In the standing posture, each of these parts provides support for the part above it, much like a stack of bricks. But the difference is that the body’s joints let each brick move semi-independently of all the other bricks. The question, then, isn’t “how do we run?” It’s waaay more basic than that. The question is: to get from A to B (over and over again), how does a stack of things have to move?bricks.jpg

You could simply lift the bottom brick—along with all the bricks on top of it—and move it that way. That’s not particularly convenient, though: it requires a lot of energy in very little time. But there’s another way: start from the top brick. That way you only have to move one brick at a time, shifting bricks in quick succession.

This is the logic that your body (and the body of any segmented organism) uses to move. If you’re standing on two feet and want to lift your left foot, you don’t start by lifting your foot. You start by shifting your weight—starting by your shoulders, and moving down the body—onto your right leg, effectively removing all the weight off your left foot.

(This takes all the top “bricks” off the foot first.)

I’ve just described to you a process intrinsic to any human movement, which Dr. Romanov calls unweighing. This is the simplest process: if you want to move a limb, you first shift all the weight you can off it first, and then you move that limb. What makes Dr. Romanov’s theory parsimonious is that you need very few ideas to successfully describe human movement as a whole. Case in point: the movement of the entire body is simply a large-scale version of unweighing.

If you want to move, you create a forward weight shift in the direction you want to go. This effectively takes your weight off your feet and puts it in the space ahead of you.

Let’s talk running. During stance, one leg has the entire “stack of bricks” on top of it, and the other one is suspended in air (and already traveling forward), with nothing pulling it to the ground but its own weight. (UPDATE #2: In terminal swing, that leg actively reaches for the ground in order to provide new support). But when one leg is in early stance and midstance, which do you move? Do you push with the leg that has all the bricks on top of it, or do you move the foot with nothing holding it in place—the “topmost” brick?Running bricks

That’s the question Dr. Romanov answers with the Pull. The Pull describes the process of getting the back leg off the ground, and recycling it forward to produce the next step. But part of the hidden importance of the Pull is that it is also a weight shift: whereas in the previous weight shift you drifted your shoulders a few inches to one side, in the Pull, you aid the elastic recoil of your tendons in pulling your foot from the ground. This brings the mass of your entire leg ahead of the foot currently supporting you on the ground.

Galen Mo
Like this, but not as effectively (and with far less flair).

In a proper landing, your foot will touch the ground just ahead of your hips, torso, and head. There’s a slight deceleration due to the foot’s contact with the ground, but the body as a whole continues to travel forward, vaulting over the support leg. If the leg that just came off the ground—the “Pull” leg—moves forward fast enough, the body can add more of its mass ahead of the point of support.

We already know that a small weight shift—drifting the shoulder to one side—causes you to move (read: accelerate) slightly to that side. Now imagine how much more acceleration you can create by pulling the leg and moving its mass ahead of the body.

Mainstream thought questions whether this kind of weight shift can create enough momentum to offset wind resistance, plus the braking effect of landing, plus any power leaks that the person might have. The argument goes that if it can’t, the “pushing” argument is more likely the correct one.

But I hope I’ve convinced you that the best way to move a stack of things is by moving one part at a time in order to tip the stack in the direction you want (and then continue to move the parts in order to create more acceleration). Supposing that this—the best way to move a stack of things—somehow wasn’t enough to overcome wind resistance and the braking effect of landing, there’s no way that you could do it with pushing (a.k.a. moving from the bottom brick) because, well, it isn’t as effective.

So if the question of running is “what is the best way to offset wind resistance and braking?” the answer would still be to reposition the most easily movable limb in order to create a weight shift to move the body in the desired direction.


Read my initial take on the Pose Method here, and how the Pose Method applies to all other sports here.

Running form and aerobic training

Training at a low intensity—often referred as “aerobic training”—is extremely important to allow the body a respite from the stresses of high-intensity training, and to develop the mechanisms that increase its resilience. We know that much.

But when training aerobically is our only focus, even during a period of “aerobic-only” training such as base-building, we may be hindering our improvement: improving our running form, by reducing the difficulty of running, also reduces the stress on our body. Because stress suppresses the function of the aerobic system, taking the time to develop our form hastens our aerobic gains.

The standard set by The Pose Method is the best example of “good running form,” as I see it. I fully adhere to the notion that pursuing a standard—the right standard—of running form is the quickest and surest way to reduce the difficulty and stress of running. But I also believe we don’t need to go as far as mastering the tenets of The Pose Method to reduce stresses and bolster our aerobic training.

This is because of a concept called “power leaks.” Running is all about moving the center mass of the body forward in a straight line. Some vertical and horizontal oscillation can’t be gotten away from. However, minimizing that up-down and side-to-side movement lets more of the body’s energy to go towards moving it in a straight line, and removes the need to spend energy balancing the body’s odd movements.

Power leaks, in essence, are those jerky movements that happen in odd places of the body—a sharp outward rotation of the knee combined with an upward collapse of the hip, which causes the weight of the body to fall to the outside. The body then has to recover, shifting its weight back in, to produce the next step.

When this extraneous weight shift and joint movement happens, the force of the footstrike travels through the body at an odd angle. Muscle fibers, and tendon and bone tissue are meant to move in alignment with the major force the body experiences: gravity, which pushes the weight of the body downward, and the opposite and equal ground reaction force the body experiences when the feet are on the ground. When tissue does not align with force, the likelihood of injury skyrockets.

“Stress.” is the body feeling that its likelihood of injury increases. Therefore, its defense mechanisms kick in. As a result, it does one of two things:

  1. It slows the body down in order to mitigate those forces to a comfortable level.
  2. It kicks up the stress response (and the heart rate), because it remains in a situation where there is a dangerous challenge to its physical integrity.

The increase in heart rate (and decrease in speed) is commensurate to the magnitude of the challenge.

Here’s the big lesson: if you want to reduce the body’s stress response to a particular task, increase its skill level.

Of course, there are myriad other stresses that conspire to wreck the body’s aerobic function: environmental, nutritional, even social. But the physical stress of poor alignment, due to the lack of skill required for the task, may be the larger part of the equation.

Running is an exceedingly complex task, biomechanically speaking, and it is performed by a full-fledged, multifaceted human, with imperfections and worries and commitments. Very few people have the privilege to be monks. Very few people have the privilege to increase their sleep, move far away from the chemicals endemic to the urban sphere, and detach themselves from the social preoccupations that come from being social animals.

But every one of us who has the time to run also has the time to perfect our running form. The problem is that few of us are aware that running form can be perfected, and that it is a way to reduce the stress of running. Misalignment is a real thing.

Alignment, or a lack of it, determines whether three astronauts get to return to Earth (or not). It determines whether our knees and hips survive the gauntlet of a hundred thousand steps we take during the marathon. It determines whether the body feels relaxed and competent when it analyzes its capability of performing a task.

“Aerobic training” isn’t the only way to approach the functionality of the aerobic system. Improving our form can do that too.

The Overlooked Mystery of Movement, Unlocked: My experience with the Pose Method Sports Technique Specialist Certification

Movement isn’t generated by muscles.

This is the central theoretical point made by Dr. Nicholas Romanov, founder of The Pose Method, when teaching movement. He points out that the similarities between all the different human movements—swimming, walking, pitching, kicking—run deep, while the differences (which we naïvely believe are the larger part of the equation) are actually astonishingly superficial.

Dr. Romanov makes a critical distinction between movement—the displacement of our body in space (or of another object, such as a ball)—and repositioning (moving arms, hands, legs or shifting our torso around while remaining in the same spot).

Muscles allow us to reposition, sometimes at great speed. But in order to transform repositioning into movement, we need to add another critically important (and almost universally overlooked) component to the recipe: gravity.

Similar to how animal physiology evolved with the assumption that oxygen is a constant, the movement mechanics of all animals evolved with another assumption: that gravity is another constant, which we harness for movement as we harness oxygen for life.

Leonardo Da Vinci wrote: “Motion is created by the destruction of balance.”

What happens when we destroy balance—when we lean juust enough in some direction (say, forwards)? Gravity accelerates us quickly enough that we reflexively throw our foot down to catch ourselves in an attempt to find balance anew. And what if instead of stopping, we let ourselves continue falling? We’ll find that we need to throw down another foot, and another, and another. At that point, we’re running.

All movement begins with the destruction of balance, but there are an innumerable amount of movements that the body can make. The difference between each and every one of them is which position we initiate from.

But how about in throwing? Isn’t it quite clear that we “generate power” from the hips? Let’s see.

We all know the throwing stance: ball in hand at the level of the ear, elbow at ninety degrees and square with the shoulder, back foot pointing to the side and front foot pointed forward. But there’s more. We rotate our shoulders so that they are aligned in the direction of the throw.

quarterback

Our upper body is essentially twisted into a spring, ready to snap back around as soon as we release the potential energy we’ve created.

But in order for this to become a throw, there is one exceptionally important component missing—an action called unweighing. If there’s any shared movement between all sports, this is it. Unweighing is essentially an explosive shoulder shrug—the idea behind it being that initially it’s much easier to reposition a structure like the shoulders (which aren’t weighed down by something on top of them), and then follow in sequence with torso, hips, legs, and feet (which are).

Unweighing happens in a big way in this video of Drew Storen’s pitching mechanics, as well as in just about any video of Usain Bolt.

Once you’ve unweighed, your shoulders are flying. For all intents and purposes, they’re suspended in air. The abdomen isn’t supporting the shoulders anymore. The spine is free to extend, and accelerate the abdomen into the air. Your hips, knees, ankles, and feet are free to move.

Unweighing is the necessary first step to any human movement. While movement is still possible without active unweighing, performance suffers.

But remember, unweighing isn’t the only component: throwing involves a forward step—a momentary loss of balance. With it, gravity gets the perfect opportunity to accelerate our body. The bigger the step, the bigger the acceleration.

“The object which moves most rapidly is farthest from its balance.”

—Leonardo Da Vinci

Movement is in no way “accidental” or “passive” just because gravity is involved: A bigger “fall” in running or throwing means that the appropriate muscles have to contract more quickly in order to negotiate the greater acceleration and help the body travel to another balanced position—a second Pose.

When that foot lands, our leg stops moving abruptly. Milliseconds later, our hips, shoulders, elbow and wrist each come to a stop—and all that kinetic energy gets transferred into the ball, which continues to travel at great speed.

In throwing as in running (as in jumping, punching, and even swimming), every athletic movement is instigated by a loss of balance.

Let’s explicitly state the counterintuitive elegance of Dr. Romanov’s Pose theory: the variety of athletic movements isn’t due to a different “action” or “effort,” but rather that the initial position—the Pose that we lose balance from—and the ending position—the Pose that we travel to in order to regain it—are different.

For any movement, exactly two things happen between Poses: acceleration in some direction due to the force of gravity, and our single voluntary contribution—our only action: an explosive “unweighing” that allows the body to quickly (and reflexively) reposition its parts in its quest to return to balance.

Implicit in Pose theory is this notion: the best way to teach movement isn’t by teaching movement. The way to teach movement is by teaching the initial and ending Pose, teaching how to unweigh, and finally by teaching the conscious mind to let the body do its thing—to get the hell out of its way.

As Bruce Lee once said: “. . .and when there is an opportunity, I don’t hit. It hits, all by itself.”

My reflection on The Pose Method’s principles and processes.

The supermajority of runners—of people in general—are fond of saying that there is no one way to run. We accept that there are specific techniques for swimming, throwing a ball, swinging a golf club, doing a spin kick, squatting a barbell, and even for properly flipping a goddamn omelet. We accept that adhering to these techniques will make us better at the motion, and less likely to be injured.

(I’ll bet you a hundred bucks that you’ll get carpal tunnel if you flip an omelet wrong one time too many).

But this doesn’t apply to running. When it comes to running, everyone’s different.

Or so they say.

Dr. Nicholas Romanov, founder of The Pose Method, disagrees. After extensive study and experimentation, he identified the key similarities between everyone’s running style. In order for us to be able to run—to move forward consistently without falling—we have to alternate support: one leg remains on the ground, allowing the body to fall forward (instead of downward), while the other moves through the air to create new support under the body’s new location.

The biggest similarity between everyone’s form, whether we’re talking about a couch potato with a New Year’s resolution or about Usain Bolt, is this: at some moment in time, one foot will be supporting the body on the ground, while the other will be passing under the hip area (which is known in biomechanics as the general center of mass, or GCM).

This is what Dr. Romanov refers to as “pose.” How to achieve pose properly is the centerpiece of his method.

Consequently, the most important difference between that couch potato and Bolt—but not the only difference, of course—is that Bolt takes far greater advantage of the time spent in pose.

When we look at Usain Bolt’s running, we recreational runners and non-athletes get the sense that we are looking at genius. We may not be able to put our finger on this genius or break it down with precise words, but we recognize it as genius nevertheless.

But what we are really seeing in Bolt is a perfect running pose—a masterful, yet unconscious (and possibly unknowing) execution of the principles laid out by The Pose Method.

The Pose Method isn’t a “running style.” Dr. Romanov emphasizes this heavily—he didn’t “invent” the running pose any more than the squat and the snatch were invented. These weightlifting forms were discovered: the squat is the best way to lift weight on the shoulders, and the snatch is the best way to propel weight vertically from the ground. The running pose is also a discovery: it is the best way to harness the force of gravity to create horizontal displacement of the upright human body.

The method part of the name refers to a recipe built around the simplest, most efficient exercises that can help us replicate pose effectively and consistently across distance and time.

To truly understand The Pose Method, it’s critical to grasp the role that gravity plays in running. On the surface, it seems that gravity has little benefit beyond helping us return to the ground so that we can once again propel ourselves forward. Gravity is a downforce. We all know this. So how, then, can it help us move horizontally?

Because of the support phase, that is, the running pose itself. When one foot is on the ground, and we shift our center of gravity even slightly forward of that foot, we begin to fall. But we can look at it in a different way: falling forward is really a rotation, at least at first. When we run, the support foot acts as the vertex of an angle between our hips and the direction of gravity. When we’re perfectly upright, that angle is zero. As we shift our weight forward, that angle increases: our hips (along with the rest of our upper body) travel forward, while our support foot remains behind.

Effectively, we’ve converted the downward force of gravity into a rotational force. The greater the angle, the greater the force.

Of course, if we just keep increasing that angle without doing anything else, we’ll fall on our face. But we don’t—our body has all the necessary countermeasures in place: they’re called reflexes. In order to catch ourselves, we reach towards the ground with the other foot.

Ideally, that foot should land directly under the center of mass. This is the case, at least, in Usain Bolt’s running (and that of a few other luminaries, such as Galen Rupp). In most of us, the foot lands somewhere else.

If our foot lands in front of us, momentum has to carry our center of mass forward, until arrives on top of the foot. Only then can we begin to use gravity to advance. And if it takes too long for our heel to lift, we are not falling forward in the earnest—heel lift is a critical component of any athletic movement. That’s why it is so emphasized across sports.

To the degree that our foot lands ahead of us, we are wasting time. And to the degree that our heel delays from lifting, we are losing power.

In order to prevent each of these two issues, the swing leg (which is off the ground) must remain under the center of mass for the entire time that the weight of the body is supported by the other leg. While one forefoot is on the ground, the other foot must remain under the hips.

The array of injuries and problems with the running of most runners are caused by deviations from pose. When we see a master runner—when we recognize genius—we are unconsciously recognizing that these few conditions are being properly satisfied. All other nuances of form are by-products of these few facts.

Dr. Romanov likes to say that we all run in pose. Regardless of our race, creed, gender, or ethnicity, we’ve all gone through this position every step of every run we’ve ever run. What differs between runners is whether we achieve pose—and retain it—effectively.

Whether there is a proper way to run is not a question. Whether there is a way to find it is not a question. The only real question is whether we hold to old, absurd paradigms—that running is the only sport where there is no One Right Way—or whether we engage our time and efforts in mastering principles which have already been discovered and already been presented as the core teachings of The Pose Method of running.