Tag Archives: mental models

Verticality, Part I: Basics of uphill trail running

“Verticality” is a term I’ve heard loosely thrown around in rock climbing and mountaineering circles. It means, well, just about exactly what you’d expect it to: sometimes it describes the sheerness (a.k.a. the slope) of a rock face, and sometimes it describes the skill of being able to interact with that face.

I use “verticality” in the second sense, to think about trailrunning.

I’m currently training for the McDonald Forest 50K trail run here in Oregon, which has a ridiculous amount of elevation change—for a road runner like me. My challenge, then, is to learn how to interact with the variables that make the typical trail different from the typical road. These are:

  • Slope (Uphill vs. Downhill).
  • Variability (rugged terrain, rocks, roots, mud, etc.)

In other words, I’m not training “endurance” or “power” for this trail race. I can’t really expand them significantly when so little time is left before the event. But what I can develop, of course, is verticality.

Particularly in trail races, I think that a person’s ability to interact with the many variables present in trailrunning is a much bigger determinant for success than, say, power. While power is still very important, our ability to interact with the trail determines whether we get to use it or not.

Essentially, the added variables in play means that the skilled runner—the runner whose body understands those variables and knows how to use them—will see their physiological advantage magnified over the runner who doesn’t. (I use the term “advantage” because skilled runners also tend to be both more physiologically powerful and more experienced in different slopes and terrains than unskilled runners, because they usually have spent more time running).

Trailrunning is an immense can of worm, so I’ll discuss each part in a separate post. In this one, I’ll deal solely with uphill running.

The typical runner facilitates uphill running by bending forward at the waist much like one does during acceleration.

This seems like a pretty good idea on the surface: by leaning forward, you are able to cruise up the hill faster without working harder. But there’s a trade-off: you compromise the stacking of your ankle, hip, shoulder, and head. Specifically, this means that you put a lot of strain on your lower back, similar to the strain a person experiences when they bend from the waist to pick up a heavy object.

When you compound this across thousands of steps, and the lower back becomes significantly tired, the hamstrings have to step in to provide hip stability (say). Without going into the details, this essentially creates a snowball effect that increases the difficulty of running, and therefore the likelihood of injury.

In a popular video, ultrarunning god Scott Jurek explains how one of the key features of correct uphill running is to keep your hips in neutral position, or correctly stacked over your shoulders. This might lead us to say that the key is to lean forward “from the ankle,” like many suggest. That’s somewhat true, but doesn’t really describe the best strategy for running uphill.

Looking at elite ultrarunners like Kilian Jornet (2:35) and Dakota Jones (1:15), we can see that their strategy for climbing steep slopes is by pulling their foot from the ground and back under their hips very quickly. An easy way to observe the effect of this pulling action is by seeing just how much they raise their thigh. Even though they’re covering comparatively little horizontal distance, their foot has to come up quickly enough that their thigh gets almost parallel with the horizon before their foot lands on the ground.

UPDATE: The raising of the thigh—also known as “thigh spread,” is just an obvious marker. For running to be effective, the focus must be on pulling the foot from the ground back under their hips. While this is fodder for another article, let me just say that one of the reasons runners should focus on the foot and not the thigh is because if we control the movement of the foot, we also control the movement of the calf and thigh (but if we control the movement of the thigh, we do not necessarily control the movement of the foot or calf).

kilian dakota

Instead of “powering up” the trail, skilled runners “fall up” the trail in the very same way that during a lunge someone falls further forward by increasing the flexion of their swing leg. (A lunge, of course, doesn’t have the same “pulling” action as running—the foot of the swing leg moves ahead of the center of gravity, instead of staying under it.) But the point is that in both movements, the degree of flexion of the swing leg determines the amount of distance covered.

While the hip extension of the back (stance) leg is greater in a deeper lunge or a higher step, a greater flexion of the swing leg is actually what accomplishes this. (In running, this means “pulling” the foot; in the lunge this means reaching forward). As far as the back leg is concerned, the difference between a shallow lunge and a deep lunge is not in ankle or knee extension—both shallow and deep, the stance leg knee is in near-full extension and the ankle is close to neutral. As far as the stance leg is concerned, the difference is in the degree of hip extension.

Lunge - fall

Like for the lunge, in uphill running it’s not the prerogative of the back hip to extend as much as it wants, whenever it wants. If the front leg remains relatively more extended during the stride, it’s impossible to (1) open up the compass, or to (2) lean forward “from the ankle” as I discussed above: the slope gets in the way. But if (3) the swing foot is pulled faster from the ground, it can cover a larger distance.

Uphill - Fall

A simpler way to say this is that hip extension of the stance leg occurs in function of flexion of the swing leg.

The key to uphill running, then, is (a) to lean forward only insofar joint stacking isn’t compromised, (b) to pull the foot up faster, and (c) to maintain stride rate, as Dr. Nicholas Romanov (founder of the Pose Method) points out in an excellent video. (Maintaining stride rate is a result of a quick and efficient pull).

Of course, this brings an additional level to the discussion: pulling the foot faster means that the runner has to be that much more powerful, or at least have that much more of a conditioned pull than someone who runs on more moderate slopes.

But if the degree of pull of the swing foot gets to determine how much hip extension of the stance leg you get, this means that the rule for uphill running also applies to regular running. The faster person on level ground will also be the faster person on the uphill.

One final point: the slope doesn’t lend importance to the pull. It magnifies it. (Put another way, the same rules apply to a slope of .003 percent than to a slope of 15. The magnitude of the slope determines how apparent they are.) The greater the slope, the more powerful a pull you need to be able to move continuously, smoothly, and successfully up it.

This has dire implications for the runner who has trained under the paradigm that “pushing”with the stance leg is the primary form of propulsion: insofar as this is the case, the degree of effort it takes to run uphill will be that much greater. The greater the slope, the faster the pulling runner will pull ahead* of the pushing runner.

(What does the pulling runner have to do to win an argument about running physics? Find a hill.)


*Pun intended.

PS. Here’s a great article that discusses several pulling drills!

PPS. Here’s another great video by Dr. Romanov discussing foot-strengthening exercises for uphill running!

No good reasons to prioritize anaerobic training. At least 9 great reasons to do some.

A friend of mine recently asked for my thoughts on an article titled Nine reasons to prioritize anaerobic training over cardio. Leaving aside the issue that “cardio” is ill defined and often contains an anaerobic component (which means that it bugs me when people use the word), this is an extended version of what I answered.

My contention is that the article in question doesn’t actually give any good reasons to prioritize anaerobic training over “cardio”—by which I’m assuming the author means “aerobic training.” (For the rest of this article, I’m defining “aerobic training” in opposition to anaerobic training: “aerobic training” is training with no anaerobic component whatsoever).

Don’t get me wrong: the article gives 9 excellent reasons for why to include anaerobic training into your exercise routine. But I’m unconvinced that these are reasons for why to  prioritize anaerobic training in the sense of “if you only have time to do one of these two kinds of training, do anaerobic training.”

Simply stated, that’s not a good idea. While many may argue that I’m splitting hairs, consider what the effect of “why you should prioritize anaerobic training” is to a lay audience. (I believe that) the effect is “anaerobic training is better than aerobic training”. This raises an important question: if it’s good to prioritize anaerobic training, when exactly should we do aerobic training?

Although no training can be said to be “better than another” in a strictly metaphysical sense, aerobic training and anaerobic training each have their advantages. And it is when you consider their relative advantages over one another that the question I italicized above becomes so pertinent: the time to do aerobic training is in fact before and so that you can safely perform anaerobic training.

 So we return to the beginning: while anaerobic training is important and necessary and has its place, its place is auxiliary to aerobic training. This is why:

In my most popular article on the site, titled High-Intensity Fitness Culture, Explained in Systems, I discussed how the anaerobic system is essentially the emergency, high-intensity, powerful, dangerous, and rapidly-exhausting turbocharger that an organism uses to overcome an immediate threat to its existence.

While the anaerobic system is a critical system (worthy of development and training), there are costs to using it: anaerobic activity produces acidic hydrogen ions, which wear down the body. Those costs will become exacerbated insofar the anaerobic system becomes the dominant energy system in the body.

All of which brings us back to the aerobic system. What exactly, does the aerobic system do? Essentially, its function is to provide long-term energy to the body by oxidizing fats (combining fats with oxygen to provide energy), and to assist recovery from anaerobic activities by processing its main by-products: lactate and positive hydrogen ions.

Insofar as your anaerobic system is more powerful than your aerobic system, your body will have a more difficult time recovering from anaerobic workouts. This is a problem for those who gave given anaerobic training priority over aerobic training, and consequently possess anaerobic systems that are more powerful than their aerobic system can sustain.

The aerobic system also happens to be the system that the body uses for its upkeep and longevity. This is an issue for another article, but the reason is because “longevity” is essentially “long-term recovery”—in other words, the ability of the body to keep recovering for longer, before breaks down enough that it dies. (Here’s a hint you can use to reverse-engineer the content of my next article for yourself).

For the sake of clarity, let me reiterate what I discussed in paragraph 4: all the reasons given in the article I’m discussing are great reasons to do anaerobic training, all legitimate and grounded in extensive research. My contention is NOT that the reasons given in the article are somehow illegitimate, but rather that when they are cast as reasons to prioritize anaerobic training, they become (1) quite misleading to the lay audience and therefore (2) dangerous to those who take the article at its word(s)—the particular words in question being “prioritize over”—and naively follow them to their logical conclusion.

(I am NOT arguing that anaerobic training will become dangerous to those who take the words “prioritize over” to mean “modestly include” regular anaerobic workouts into their predominantly aerobic training).

Is there really a difference between “injury-prevention” and “training specificity”?

A lot of us are familiar with sports specificity: you tailor your training to achieve greater performance in individual sports. Some of us go as far as being “event-specific.” We train trails for trail running events. We practice running the inclines and hill lengths we’re likely to encounter during the event.

But I think that we can take the concept of training specificity a lot further: particularly as it pertains to the realm of injury prevention.

What does an injury mean from the perspective of athletic competency? It means that there was some stress, supposedly germane to the sport, that the body simply could not tolerate. Presumably, this is a stress that the body can (and should) adapt to.

I’m not talking about obscene stresses such as the micro-concussions that have been shown to cause brain damage in football players. I’m talking about simpler things: dehydration and hypoglycemia after a marathon, shin splints, etc.

Let’s take shin splints, for example. Shin splints are reputed to occur due to the repetitive stress associated with running. Shin splints—and the subsequent stress fracture—cause people to lose training time and training quality, increase the overall stress of training, etc.

My point is this: an inability to cope with a particular stress (resulting in an injury) is a bottleneck to development.

If an injury prevents a runner from improving, or puts their athletic future at risk (and it does), then injury-prevention should be at the very top of the priority list. Put another way, injury-prevention is the ultimate sports-specific training: it means training the body not just to get better at the sport, but to train the body to handle the basic stresses associated with the sport.

This is a difficult proposition for many people: it is different on a case-by-case basis. The same symptom (shin splints) can have a multitude of causes. When the issue is the amount of stress, increasing lower-leg strength by itself can solve the problem. But others may need to fix an imbalance between the front and back muscles of the lower leg, for example. Others yet may be erroneously unburdening the big calf muscles by giving the job of knee flexion entirely to the hamstrings.

Failure to address any of these issues can dramatically reduce the training response: tighter muscles and less mobility means less neuromuscular feedback. But a higher heart rate is necessary to drive stiff (and weak) muscles. This means more stress. And because some muscles are stiff, the body geometry is disadvantageous: it isn’t going to align itself (or remain aligned) with the primary vectors of force.

Fixing any of these issues will allow the body to learn from and adapt to the sport. Ultimately, I believe that the runner who “paradoxically” spends time correcting muscle imbalances or strategically strengthening bone, muscle, tendon, and connective tissue—and running less miles because of it—will need to run far fewer miles to observe the benefits of training.

We need to make the choice to not merely roll out our tight quads or hip adductors after the fact. I think we need to address the underlying cause of that tightness (a process which may or may not include myofascial release). And I think that we need to put this within the larger context of our training and racing: in no way does injury prevention or rehab constitute “taking time off” from training.

Preventing injuries and doing the rehab is a much better—and more honest— example of “training the body” than going out and slogging miles that are just going to put us back on the table. In every way that matters, we’re doing the training that our body needs, right now.  Tomorrow, we’ll be able to go out and do the training we want, and achieve the effects that we want.

And how much happier, faster, and healthier would we end up if we can trick ourselves into wanting to do the training our body needs?

Systemic paradigms and their repercussions: the athletic phenomenon of “heel-striking,” and its origins in scientific reductionism.

It would be misleading to say that the philosophical currents that drive society affect our behavior and influence events. It’s much more accurate to say that those philosophical currents largely determine our patterns of behavior and generate those events.

The widespread and damaging athletic phenomenon of heel-striking is no exception.

(By “heel-striking” I refer to the global set of gait characteristics which results in the runner putting their weight on the heel of the landing foot ahead of the center of mass).

Systems thinking proposes that our “mental models”—our belief systems about the world—create the very fabric of society, and therefore the patterns of behavior that emerge. The repercussions that our worldview has on our thought, our social structure, and our lives, are vast, and they are powerful.

Continue reading Systemic paradigms and their repercussions: the athletic phenomenon of “heel-striking,” and its origins in scientific reductionism.

The irony of the “fitness” identity: a praise of CrossFit, and a critique of its founder.

CrossFit, in name and on paper, is an excellent form of exercise. CrossFitters achieve fitness through emphasizing the mobility and functionality of the body across many varieties of athletic skill. In my opinion, the most physiologically sound version of a human body is one in which its strengths and abilities are expressed alongside a capacity for sustained, safe, and healthy endurance running. CrossFit doesn’t emphasize the development of the “aerobic engine” necessary for that kind of endurance running. That may be my one complaint against the sport. That aside, CrossFit is as good as it gets.

As a runner, I live with the hopes of becoming fast, regardless of who’s next to me, or where I go in the world. Because of that dream, the training philosophy of CrossFit—and many of its exercises—have become a staple of my training. My simplest interpretation of the CrossFit philosophy is that a single-event athlete will be better at their best event if they are a multiple-event athlete. In other words, ability has to be cultivated across a breadth and depth of skills, for “fitness” to emerge. As the website says:

“By employing a constantly-varied approach to training, these functional movements at maximum intensity (relative to the physical and psychological tolerances of the participant), lead to dramatic gains in fitness.”

It’s there in the name: CrossFit.

Ever since hearing of CrossFit, I do more and more classic weight exercises such as the barbell squat—and have consistently made gains in speed, power, and endurance over “purer” runners. I’ve incorporated jumping rope as the ultimate plyometric and cognitive exercise: the amount of repetitions that you can put out during a jump-rope session do wonders in honing your body’s ability to exert force against the ground, and receive it safely.

CrossFit’s definition of “fitness” is the most useful I’ve ever heard of—or that CrossFit is aware of, too; it says it right there on the website. “Fitness” is defined as:

“Increased work capacity across broad time and modal domains. Capacity is the ability to do real work, which is measurable using the basic terms of physics (force, distance and time). Life is unpredictable (much more so than sport) so real world fitness must be broad and not specialized, both in terms of duration and type of effort (time and modal domains).”

This is a great definition. I can’t visualize a world where CrossFit practitioners would be anything but the supreme examples of health, if that philosophy (and this definition of fitness) were followed to the letter, and taken to their logical extreme. I’ll begin by breaking down their philosophy—(I’ll do the definition of “fitness” in a bit)—so you can see why:

Employing a constantly-varied approach to training. Taken broadly enough, this means that the concept of “training” can easily be expanded to encompass activities that aren’t typically known as “exercise.” Nutrition, for example. Developing the functional components of nutrition would be a boon to the athlete’s net power output. Seeking spiritual, social, and emotional health for their purely functional benefits, is perfectly encompassed under this philosophy.

I think back to Chris McDougall’s book, Born to Run, in which he quoted the kinds of advice that legendary track & field coach Joe Vigil would tell his athletes: “Do something nice for someone.”This is a varied  approach to training. And a coach like Vigil would only incorporate it because it helped take his athletes to another level of athletic achievement. (These kinds of “unorthodox” approaches are common across the 1% of the elite: Bruce Lee trained “breaking habits,” and when that became a habit, he would break that one too).

Let’s analyze the phrase “movements at maximum intensity, relative to the physical and psychological tolerances of the participant.” This phrase implies a systemic understanding, in which the athlete is not perceived to be a machine, but a person with a unique reality, a unique set of circumstances, that can influence their athletic output at any given time. This is a call to empathy for of the trainers, and a call to self knowledge for the athletes.

Let’s move on to the definition of fitness: “Increased work capacity across broad time and modal domain.” On the surface, this means that the athlete should have speed, power, and endurance.

But let’s look at the definition a little bit more deeply. Especially in conjunction with the phrase “relative to physical and phsychological tolerances,” I could easily argue that one such “broad time domain” is a lifetime. In other words, embedded within the very definition of “fitness,” as put forth by CrossFit, is the argument that health entails fitness: there must be health if the athlete will be “fit.” Under that definition, losing “fitness” because of a lack of health means that what seemed like fitness wasn’t fitness, but was instead a façade—a social performance of fitness that broke down under the assault of time.

Only in view of that impressive philosophy can this next part be so damn ironic. I recently read a New York Times article critiquing the obsession of Westerners with physical fitness. The article quoted extensively from an interview with Greg Glassman, CrossFit’s founder. The NYT article’s critique of the fitness craze centers around Glassman’s 2005 admission that CrossFit had become a breeding ground for an exercise-induced condition called rhabdomyolysis, which can lead to kidney failure. According to the New York Times article, Glassman viewed the rampant “exertional rhabdo” problem as part of CrossFit’s “dominance over traditional training protocols.”

This is absurd—and not only in reference to a “reasonable person’s” idea of fitness.

The idea that a dangerous kidney condition is a marker of fitness goes against CrossFit’s stated definition of fitness—the potential for increased work capacity across broad time and modal domains. Furthermore, persevering through exercise despite the onset of rhabdomyolysis is a serious breach of the idea that intensity should be measured relatively to the physical and psychological tolerances of the participant.

But wait! There’s more.

According to the NYT article, Glassman also wrote: “Until others join CrossFit athletes in preparing…the exertional rhabdo problem will be ours to shoulder alone.”

You just can’t make this stuff up.

Glassman’s writing reminds me of something I read in a book called The China Study, about the physiological effects of eating animal protein (specifically, of its contributions to cancer and heart disease). In that book, the authors quoted a physician saying that heart disease was the burden of man, and that only “the effeminate” would pursue other, healthier, avenues of eating to escape it.

In these two examples, these “experts” on health have structured their identity around the ill effects of their chosen activities! When the marker of being “a man” is heart disease, it becomes impossible for anyone subordinated to those social circumstances to seek a healthy lifestyle.

Similarly, if it is the presence of exertional rhabdo that makes CrossFit so “superior”—at least in the eyes of its founder—then the presence of rhabdo in the athlete quite naturally becomes the high watermark of achievement. In direct opposition to the stated philosophy and mission of his fitness empire, Glassman has set up a dangerous situation for his followers: if they haven’t suffered the ill effects of exercise, that means they haven’t been training hard enough!

The problem here isn’t CrossFit. It is the discrepancy between what CrossFit proposes on paper and what its founder touts as the “CrossFit identity.” This should serve as yet another reminder of the fact taht there is often an abyss between what a particular training regimen does for us, and what it is supposed to do. Often, the problem isn’t in how we follow it, but in how we don’t—or more specifically, how we overshoot.

If the reasons for which we overshoot are based on a set of social beliefs that we have created around us—that have long since been divorced of any knowledge of the world (or were never based on that knowledge in the first place)—we are treading dangerous waters. Often, we can’t even see them. Not when it counts. We might be able to laugh at those ironies over a couple of beers, but once in the gym, they will consume us and guide our efforts. If we have taken an identity upon ourselves, all of our exertions will be in service of that identity.

And if that identity centers around illness or overtraining, it doesn’t matter what athleticism we have cultivated as a short-term side-effect of our exertions. We will lose it.

We live and train in social systems. Often, those systems do no favors to the physical, psychological and biological systems on which our athletic output is predicated. Our identity—which is based largely on the demands of that social system—will shape our choice of exercises, the intensity, duration, and frequency with which we do them, and the efficiency of our rest and recovery. What’s on paper never reflects the reality of the situation. The social system, via our identity, informs the effectiveness of our athletic development. 

Let’s make sure that social system, and that identity (or lack thereof), is the right one.

UPDATE: For an answer to the NYT article critiquing “extreme fitness,” see this Outside Magazine article. I’d love to hear your thoughts and answers to any of these articles, and this blog post, in the comments.

Meditation: an epic training tool. Slow yourself down to become faster.

Meditation calms the mind. It lets us collect the various parts of ourselves and bring them together to work on a specific objective. That objective can be to develop our athletic expression.

In training and life, it often happens that things just aren’t going our way. We’re in such a hurry that we stop functioning well: we drop a vase, and then we have to hurry even more to clean it up. The cycle just quickens—hurry only begets more hurry.

Paradoxically, in order to move faster, we have to learn how to slow down. But when the pressure’s up, that’s usually the very last thing we want to do. The ability to defuse those impulses is what separates good performers from the very best. That’s why you often hear in the Special Forces: “slow is smooth, smooth is fast.” As I’ve discussed before, elite performers understand that when there is too much speed in a system—when they get the jitters—things start to go bad. On the other hand, when the non-elites see the elites moving faster, they assume (based on their mental models) that it is because the elites are putting more speed into the system.
Continue reading Meditation: an epic training tool. Slow yourself down to become faster.

Training starts with an idea. Make sure that idea is correct.

More and more of the newer science seems to fly in the face of conventional wisdom.

This trend brings into question everything that we know—and more importantly, everything that we think we know.

Sitting in the armchair, this isn’t a problem. If we theorize about the differences between barefoot and shod running, and never actually go out for a run, never actually pushing the system to observe its behaviors, theory seems like a great idea. It seems like all we need to do.

But we don’t do theory for its own sake. The point of theory is for it to help us in practice. So we go out and run, and if our mental model—our suppositions, assumptions, beliefs, and beliefs about our knowledge—is different from how the world actually works, the discrepancies between that mental model and the real world will begin to show up as pain on our knees.

One of the reasons I love running is because out on the road, mental models accelerate towards the ground at 32.2 ft/s2. The collision between our mental model and the ground is as close to truth as we lay athletes are ever going to get.

Writing this was brought on when I read a post by The Gait Guys, talking about achilles tendonitis, and possible solutions to it. Conventional wisdom would suggest that the way to reduce achilles tendonitis is by shortening the achilles tendon, a.k.a. raising the heel on the shoe.

Why? Simple. If you raise the heel of a shoe, you loosen the achilles, so it’s not carrying the weight of the body anymore. By all counts, that should do the trick.

(It doesn’t).

But that’s the problem. This solution was thought up in the armchair, and never tested in practice. Theoretically, it should work. But that’s because a theory is a mental model: a self-contained little idea of the world. Given the rules of that model, raising the heel is an excellent solution. Now, all that has to happen is for that model to coincide with the realities of the body.

In academic circles, those kinds of suppositions are known as “pipe dreams.”

The body isn’t just a series of simple machines put together. It is a complex entity, built from stacks and stacks of systems, each doing a different job. And the job of one of those systems is to regulate impact force by using touch receptors.

Because that subsystem—the central nervous system—is also at play, the behaviors of the body/system will be “unpredictable.” But it’s only unpredictable because the theoretical model doesn’t account for that subsystem.

When we account for this system, its actual behavior seems a lot more reasonable: in order to maintain tension on the achilles, the body raises the foot as the leg approaches the ground. However, this means that the leg can accelerate for a longer period of time, making the initial contact forces that much more powerful.

We need to understand the systems we’re playing with.

We need to go out and test them, and get a feel for their behavior. The phrase “push the envelope” comes from test pilots: every one of those pilots climbed into the cockpit fully aware of the mathematical model that predicted the flight capabilities of the airplane—also called the “flight envelope.” Pushing the envelope literally means taking the plane into unpredicted territory—literally pushing the aircraft beyond what the mathematical predictions say that it can take.

Dangerous? Yes. Necessary? Absolutely. The reason flying such a safe mode of transportation these days is because a few brave and knowledgeable people understood that there is a big discrepancy between the armchair and the road—between the predictive model and the actual system.

Let’s take these lessons and put them into our running. Let’s push our own running envelopes to see what sorts of behaviors our body exhibits—and then modify our training and adapt accordingly.

Reflections on the Systems Thinking/Leadership workshop at MIT Sloan.

As part of my recent trip to Boston, I attended a Leadership/systems thinking workshop at MIT taught by Peter Senge. The goal of that workshop was to pair teams of Leadership Lab (or “L-lab”) students with various organizations of different sizes and scopes. Among the organizations represented were Caterpillar, West Elm, and OCP. This arrangement had a dual purpose: to assist these organizations in developing their sustainability initiatives through systems thinking, and to provide real-life learning opportunities and challenges for the students of L-lab.

I went as a part of NOS (Noroeste Sustentable), a small NGO based in La Paz, Baja California Sur, Mexico. My role as an attendee was primarily to provide support to Alejandro Robles, the organization’s director. This was, of course, an amazing opportunity to learn about systems thinking from Peter Senge. But I also went with “half an eye”—as I told one of the instructors—towards learning about the Leadership MBA they offer at MIT Sloan (and PhD opportunities, as well).

Systems thinking is a framework for thought and leadership developed from the multidisciplinary approach to engineering provided by systems dynamics. Systems dynamics quantitatively and qualitatively studies the components of physical systems, their interactions, and tries to model and predict otherwise unpredictable behaviors that occur from the complexity of the interactions involved. Systems thinking takes this discipline and and focuses on teaching people how to view the world in terms of a complex set of interactions, which are predominantly hidden and inaccessible to our firsthand experience.

Continue reading Reflections on the Systems Thinking/Leadership workshop at MIT Sloan.

Increasing the body’s percentage of liquid assets is how we accelerate athletic development.

The human body is an economic system. If only we treated it that way. The ways in which the magazines and the latest trends compel us to go about exercise and physical development just don’t observe this reality.

Because the body functions like an economy, the surest way to achieve any goal is creating the conditions for growth in that direction. This is why I speak in terms of liquid assetsassets which can be sold very quickly and without losing market value in the process. Increasing the liquidity of our body’s relevant nutrients—fats and carbohydrates, to name two—is the very first step towards entering a cycle of investment to drive the body’s economy in the direction we want—even when “growth” corresponds to growing in the direction of a lower body mass.

Even when we’re talking about running for the sole purpose of being skinny, constraining calories just won’t cut it. By forcing the body to implement austerity measures (through dieting), we destroy its ability to grow in any direction. Even though we’ll achieve skinniness in the short-term, doing so will compromise the body’s ability to maintain it. In systems-speak, this is a classic example of Shifting the Burden.

Continue reading Increasing the body’s percentage of liquid assets is how we accelerate athletic development.

How philosophy powers athletic achievement: a personal anecdote.

Earlier this summer I ran the HTC race in Oregon, a well-known, hundred-plus mile relay. I was part of an excellent and enthusiastic Reed College team. I was given the more . . . motivating, if you will, leg of the race. It consisted of a set of three stretches—legs 5, 17, and 24—totaling about 21 miles. The last stretch included an 850-ft hill. I engage with running as a form of expression, and not a form of propulsion. Nowhere does the contrast between expression and propulsion become more stark than when a single group of people—each and every person with their own metaphors, mental models, and training histories—run together up a hill in heat that closes in on the double digits.

As was the case on that particular hill.

Now, I’m not the fastest runner out there. And, I gotta say: should precedent and probability have the final say, I’ll never be. But over the years, I have developed my running to be quite effortless—and therefore, quite fast. I like to run without effort, and fully engaged, like a well-oiled machine where every tiny part is playing its part in exactly the right way, all the pistons moving in perfect synchrony, all of the forces which course through my body coursing through it in exactly the right vectors. This is a story about what effortlessness means, what it does for you, and what it feels like. But more importantly I share what are, in my opinion, the most basic ideas of how to replicate it it.

Continue reading How philosophy powers athletic achievement: a personal anecdote.