Category Archives: Principles of Training

Tendinopathy, musculoskeletal characteristics, systemic strategies, and running.

I came across a very interesting research article titled Running Biomechanics: Shorter Heels, Better Economy. Evidence is presented that running economy is determined by supposedly immutable factors in the athlete’s musculoskeletal structure, such as the moment arm of the achilles tendon, which refers to the distance between the achilles tendon and the ankle joint, which serves as the fulcrum of rotation. The evidence presented suggests that greater running economy—the amount of energy stored in the tendons, to be used in the next step—correlates with a shorter moment arm far more strongly than with other factors such as  lower leg volume or VO2 (a given rate of oxygen consumption). This has serious implications for the advice given to runners on how to improve their running economy.

Moment-ArmTakeoffAchillesTendon

The authors conclude that 56% of the variation in running economy between runners could be predicted by the moment arm of the achilles tendon. This is interesting, considering that other studies suggest that there are 20-30% differences in running economy even among elite athletes. The study, which selected highly-trained, competitive male runners as participants, corroborates these findings.

This body of data suggests that, by and large, training does not affect running economy, when running economy is a function of the body’s skeletal configuration. What does this mean? That when it is up to the physical characteristics of someone’s bone structure, changes to running economy cannot be easily made. Because the achilles tendon moment arm (which corresponds to the distance between the ankle joint and the heel bone) is fixed in adults, the abovementioned 56% in variation is also fixed.

However, factors that aren’t skeletal could affect running economy—factors such as poor muscle coordination and imbalance. For example, one of the most common problems in amateur runners is stiffness of the soleus and gastrocnemius (calf) muscles. Often, this contributes to excessive plantarflexion (pointing of the foot) and premature heel rise during the late stage of the stance phase of gait. (Heel rise should occur during pushoff phase).

dosiflexion_plantar_flexion (1)

By raising the heel, the achilles tendon moment arm increases, allowing the gastrocnemius to exert more force against the ground. However, as the above-referenced article would suggest, this means that comparatively less energy would be stored in the achilles tendon. Other research on achilles tendinopathy corroborates this, with findings that those who suffer from the condition often have a reduced activation of the tibialis anterior muscle. By and large, those who suffer from achilles tendinopathy will point the foot to decrease loading of the tendon.

It is likely that pointing the foot as a result of achilles tendinopathy is a two-pronged strategy: both the reduction in tendon loading and the increase in achilles moment arm contribute to maintaining a functioning system. In light of the abovementioned research, this increase in moment arm means that force exerted into the ground is achieved through active muscle contractions of the soleus and gastrocnemius, rather than passive energy storage in the achilles tendon. By offsetting the production of power from the tendon to the muscle, the limb can remain useful in a suboptimal state.

This means that there is no single way to improve running performance. In fact, unless you have severely impaired biomechanics—which, granted, is more than commonplace in modern runners—there is nothing much you can do about your running economy. But unless you already use your body perfectly, there is no point in worrying about a large achilles moment arm. And if you already do use your body perfectly, there is no point in worrying about it either: you’ll simply end up developing other faculties, such as the aerobic engine, as your body seeks to achieve greater speed and endurance.

In Running Science, Owen Anderson compares Steve Prefontaine and Frank Shorter, writing that even though both athletes had very similar times in the 10,000 meter race, Prefontaine had a markedly higher VO2max (maximum volume of oxygen consumption per minute) than Shorter.   Anderson’s analysis is that Shorter had superior biomechanics, while Prefontaine had to develop greater aerobic capacity. However, in light of the presented evidence (and a cursory glance over both athletes’ physiology and body type), it is likely that Shorter had musculoskeletal advantages over Prefontaine, such as a reduced achilles tendon moment arm.

Steve Prefontaine
                   Steve Prefontaine

Concretely, this means that faulty biomechanics aside, certain runners will benefit more from particular kinds of training than others. For example, a runner with a huge achilles tendon moment arm may benefit more from weightlifting and muscle power exercises, particularly those that develop the tibialis anterior, allowing for ankle stabilization during the landing phase at greater ankle dorsiflexion than runners with a smaller achilles tendon moment arm: as mentioned above, dorsiflexing the foot reduces the achilles moment arm and increases loading (which is why those with achilles tendinopathy avoid it).

Runners who have to increase dorsiflexion to a greater extent for a given running economy will still be relying on more muscle power than those who don’t, at least in some fashion: the moment arm of the tibialis anterior (which dorsiflexes the foot) increases throughout dorsiflexion. In other words, this will offset the need for muscle power from the rear muscles to the front muscles, at least in the calf region.

It’s likely that the same biomechanic advice—advice on how to develop running economy—won’t be equally useful for two different runners. Although running economy will be largely a function of achilles tendon moment arm, running speed, endurance, and overall performance is not. Runners should study their bodies (or get studied by an expert) to see what kinds of training will help them develop their race performance.

Keep in mind that running economy is not the same thing as running performance. Prefontaine and Shorter’s comparison should tell you that. However, certain people have attributes that favor specific skillsets. Some people have great muscle power, others have great economy. Lately, running trends have been focusing too much on the energy-return properties of the body—so much so that runners are either alienated or forget that the body has other properties. The body is always more complex than the latest trend says so. And even if the latest trend does not validate the attributes that we should develop to make us better runners, it doesn’t mean those attributes aren’t there, or are somehow less important. The human body is an extremely complex machine, capable of achieving great performance through many different avenues. With a bit of study, we can figure out what those are.

A great, great article on reactive sports rehab: the “foam roller” paradox.

A great article by Robert Camacho, titled Your IT Band is Not the Enemy (But Maybe Your Foam Roller Is), neatly summarizes one of the many shifting-the-burden systems that we encounter in mainstream sports rehab: the use of the foam roller. When we apply the foam roller to our IT bands, it alleviates pain, and allows (most of) us to forget that the ultimate solution to the problem is actually resolving muscle imbalances.

The article neatly points out that by not resolving those imbalances,

you aren’t really doing anything to affect any kind of permanent change and in some cases you may be pushing the issue further.

The issue here is that the two muscles that are most directly connected to IT band function, the tensor fasciae latae and the gluteus medius, aren’t being developed properly, and aren’t being taught to interact with the rest of the hip musculature. As mentioned above, this is an excellent example of a shifting the burden system, which is characterized by how the “symptomatic,” short-term solution itself reduces the ability of the system to solve the fundamental problem:

The problem with this is that you’re now statically using a structure to achieve dynamic stabilization. That’s kind of like responding to the shocks on your car being too loose by tightening them up so much that they can’t move.

In systems thinking terms, this is known as a loss of resilience. By tightening up like this, the leg cannot adapt to changing conditions, such as variations in terrain, and the progression of muscle fatigue. In other words, this is a guaranteed recipe for constant, chronic injury.

The one caveat that I would add to the article’s message (although it is far from a counterargument) is that the foam roller may be a useful tool while also engaging in rehab that solves the fundamental problem. Because the foam roller does loosen up the muscles, when the hip is too tight to move well, the foam roller can be used before doing the relevant hip workouts, in order to make them more effective. As with other shifting the burden systems such as anaphylaxis, (which I discuss halfway through this article) sometimes you need the symptomatic solution to keep the system afloat, but only while diligently implementing the fundamental solution to solve the underlying problem.

Want to change your stride safely? Learn about your body.

In my last post,  reader Ana Maria Castro Monzon commented:

“Great contribution! something that happens to me eventually when I’m running is that I feel that I run too slowly. I identified with “I’m just a slow runner.” How can I observe the alignment of my body when I run to improve my step?”

That’s the million-dollar question. I’ll say again what I answered in the comments: aside from going to a gait specialist, the best thing that you can do is observe, observe, and observe.

Most of us don’t really zoom into what we’re doing when we run. But if we did zoom in, and we watched and felt our body move, we would feel the slight disparities in our pushoff, the small differences in our arm swing, etc. That’s the very first step. Simply stated, look for differences.

First, we need to see that something needs to change, in order to change it. And when we develop experience in observing the motion and shape of our bodies, something happens. Just like when we develop experience observing brush strokes on a canvas, we develop an intuitive awareness of what’s wrong, of what’s missing, or what should be removed.

Observation and introspection are the key to developing this intuition, which later translates into knowledge. Why? Our bodies are systems, and systems are like puzzles: every single piece has a particular place in the whole, and its shape and color reveal its place relative to the others. In our bodies, every muscle, bone, and tendon has a particular place, and all of these parts function relative to every other. When one of these parts is functioning incorrectly, this reflects on itself and on the parts that surround it: when you put a puzzle piece in the incorrect location, not only does it seem out of place, but the pieces that surround the spot where it should have been are also negatively affected.

In the human machine, not a single part is superfluous, or out of place. Just like when you look at a car’s engine block: even if you don’t know much about cars, or engines, and at first glance you swear that one of its parts is superfluous—that it’s there just because, for “no rhyme or reason”—you’ll likely find that it has a very specific function, that you couldn’t pinpoint because you weren’t an expert.

This is the story of the appendix: some 20 years back, it still was thought that the appendix was a remnant of evolution. People would jokingly say that its only purpose was to get infected so that it could be cut out. But now we know better: the purpose of the appendix is to safeguard intestinal bacteria in the case of diarrhea or disease, so that the intestinal flora has a chance to repopulate.

All systems, across all domains, function largely like this. If something exists, it is there to perform a certain function. And when we introspect about our bodies and observe them, we’ll realize two things: first, that our bodies are systems, and second, that if we’re slow, or sick, or injury-prone, we can be certain that it is because some part is not doing its job, and certain that it’s not because we are slow, or sick, or prone to injury.

Further introspection will reveal what part (or parts) that is.

Even more introspection will reveal what to do about it.

And then there is the research. Although not every one of us has to become a physical therapist or a doctor—who are experts in all bodies—there is no good reason why each one of us shouldn’t become an expert in our own body. That’s the path that will take us towards being injury-free, and towards speed. While some of us may just want to be told what to do by a coach or a physical trainer, firsthand knowledge of our bodies is the most invaluable tool. Let me put it to you this way: two-thirds of the way into a marathon, we can be wondering why we’re getting hamstring cramps, or we can be exactly sure why we aren’t. There may be a few shortcuts to success, but there are no shortcuts to excellence.

It’s not about training more—or less. It’s about training correctly.

One of the most prevalent problems in sports is that people consistently and continually train their compensation patterns. Practitioners and athletes put so much time and energy into their training, and quite often, they’re doing it wrong.

This is where the old saying “quality over quantity” hits full force.

There’s a lot of literature out there on the dangers of persevering though pain, and on the problems with leaving compensation patterns unresolved. Often, when we continue training despite the pain, we force our bodies into suboptimal patterns of muscle use. Because avoidance of pain is an extremely powerful impulse, those habits remain ingrained long after the pain has ceased.

Similarly, when we leave compensation patterns unresolved (and strengthen them by training), we’re developing our body, but along a suboptimal vector. Instead of training all of our body parts to interact with each other, we sideline a few of those parts, and leave them undeveloped and out of the game.

This is a bigger problem than it seems: one of the key tenets of systems thinking is that the whole is bigger than the sum of its parts. For example, let’s suppose that our imaginary athlete is compensating for weak gluteus maximus activity with an overactive quadratus lumborum (lower back muscle). Not only will their hip extension on the weak side be, well, weaker, but the overactive quadratus lumborum will likely be impinging on their ability to take full breaths.

Overuse one part, and you guarantee underusing another.

Because their breath is impinged, their aerobic system becomes resistant to training. Because their hip extension is reduced on one side, their maximum speed is much lower than it could be, and they lose their ability to exercise with maximal weight across their entire body.

Since these compensation patterns often go unnoticed, our imaginary athlete might tell another “I’m just a slow runner,” or “I’m injury-prone,” never knowing, never realizing, that their slowness (or their proneness to injury) is not due primarily because of some deficiency that is essential to their bodies, but largely because they’ve spent all of their training reinforcing existing compensation patterns.

In my opinion, the most important piece of advice that any runner—any athlete—can take is that athletic ability doesn’t have to do with lung power or muscle power, but with the synchronization between the lungs and the muscles. The body’s power isn’t simply a measure of how powerful individual systems are—it’s a measure of how well they work together.

Let’s give a quick example: throwing a baseball. Throwing a baseball isn’t about arm power. It’s about initiating the motion with one-leg hip extension against a solid object, and translating the resulting force across the torso, through the opposite arm, and into the ball. An athlete with a hugely powerful arm but weak hips (or strong hips that don’t work together with the torso and arm) won’t be able to throw nearly as well as someone who is strong and athletic but uses her body in a synchronized fashion (Mo’ne Davis comes to mind here). To put this claim in context, I doubt that miss Davis could win an arm-wrestling match with my father (who is massively strong even at 60), and yet there is no way that my dad could throw a ball half as fast as miss Davis could.

mone-davis

Back when Bruce Lee was still thrown around as an example of athletic excellence, I’d often hear people remark on the speed and power of his movements: “how is he that powerful, when he’s that skinny?” Even though Bruce lee had an extreme level of muscular power and definition, the sheer speed that he had was due to the fact that his body was extremely synchronized, and the mechanical energy generated by that muscle power could be effectively translated from one part of his body to the next.

bruce lee

All of the masters of athleticism share particular characteristics. It’s not enough to just have the genetics—that’ll merely make you good. It’s not enough to just put in the time—that’ll make you great. To be the very best, you need a special bit of knowledge, knowledge that often seems counterintuitive—how can power not be about muscle power?—and you need to apply that knowledge in training.

Take this quote from Bruce Lee:

“The less effort, the faster and more powerful you will be.”

Wait, what? Doesn’t effort mean that you’re training hard? Doesn’t effort mean that you’ll be exerting yourself more, and therefore moving faster and more powerfully? Sure—if power was about muscle power. But power is (and always was) about alignment. That’s why Lorena Ochoa’s golf swing is so powerful. That’s why well-employed Judo techniques let small women beat much larger men.

Lorena ochoa

Let’s think about this quote in biomechanical terms. In these terms, this quote serves as an inoculation against compensation patterns. Above all, compensation patterns are effortful. By seeking to do the same movement with decreasing effort, the athlete puts herself on a path where athletic development means eliminating compensation patterns, and finding the simplest, most parsimonious way to do things. This doesn’t mean using less muscles. It means using more, in order to shape the body in such a way that it allows the generated mechanical energy to travel in the straightest line possible.

Every athlete is different, and the solution to what “the straightest line possible” means will always be different for every athlete. But ultimately, that’s what training correctly really means, and that’s what separates the fast runner from the slow runner. Answering that question for ourselves is the key to athletic excellence.

Shifting the burden, recovery techniques, and systems thinking.

The mainstream of sports therapy and recovery is catching on to the idea that a lot of the most common techniques are actually shifting the burden systems.

Shifting the burden systems are systems that get created when there is a problem that has certain symptoms. Because it’s often easier or simpler to mitigate the symptoms than to address the fundamental solution that takes care of the problem, the symptoms get mitigated while the problem continues to grow (and becomes harder and harder to solve).

Icing, stretching, and using foam rollers are three great examples of shifting the burden systems. While icing can help reduce swelling, it often damages the surrounding tissue, causing even longer delays in recovery. Stretching, while helping muscle soreness, causes muscles and tendons to become elongated, breaking the patterns of structural tension in the body. Using foam rollers, as a recent article suggests, mitigates the pain caused by muscle imbalances (which allows the imbalance to grow until it becomes debilitating).

In other words, all of these systems share the same characteristics: they create “quick-fixes” that seem to solve the problem, while actually the problem continues to grow.

Systems thinking lets us take these three examples and find the underlying similarity between them. When a therapy, recovery, or growth solution seems to work extremely quickly, it is important to lead with the following question: “Am I looking at a shifting the burden system?” Most often, when something works extremely quickly, it is just the symptoms that are being resolved. The hidden problem keeps growing and growing, until damage to the system—the inevitable sports injury—“comes out of nowhere.”

As athletes, we all have to keep a lookout for shifting the burden systems. Did we get too tired, and shift the burden of pushing off from our gluteus maximus to our gastrocnemius and soleus (in our calves)? Did we get injured in our non-dominant leg abductors, and shift the burden of supporting the body to our dominant leg adductors?

These are all examples of compensation patterns. While they may work in the short-term, but ultimately hinder our ability to develop and perform athletically.

Furthermore, it’s important for us athletes to realize that once we have defined what a shifting the burden system is, we don’t have to study every new therapy, recovery, and exercise technique and impartially judging its merits.

For example, a recent article initially referenced by the Gait Guys suggested that a possible treatment for hip pain/reduced hip mobility would be to coach patients into pushing off with their gastrocnemius (calf) muscle. Thanks to systems thinking, we don’t need to look further than this short mention to know that this is a shifting the burden system. The main drivers of the body’s athletic expression are the hip muscles and the thigh muscles. They are the ones that should be pushing off, period (as the Gait Guys sensibly mention). Shifting the burden of pushoff from the hip muscles to the calf muscles will address the symptoms (hip pain) while reducing the need for the hip muscles to remain strong. The hip muscles will weaken over time, and their suceptibility for injury will increase. Classic shifting the burden system.

This is what systems thinking lets us do: extrapolate cleanly and freely from one system to the next. What works in one economy will work similarly in another, because they are the same kind of system. When we restrict the body’s inputs (by dieting), the body will respond like any other economy: it will shrink, beginning by cutting back on infrastructure. Just like economies respond to a policy of austerity by cutting back on public infrastructure, education, and health, the body starts cannibalizing bone and muscle, and starts winding down the functioning of non-essential organs.

Restricting inputs of energy (food, resources, money) does the same to every economy, no matter what economy you’re talking about.

We athletes should become well-versed in systems thinking, to develop a deeper and more intuitive understanding of the forces that shape our athletic expression, and athletic development.

The underlying similarities between seemingly different things should become obvious to us. Rather, it behooves us to look beyond superficial differences in everyday things to understand the underlying patterns and the systems beneath those patterns. That’s what this blog is for.

The human body as a system of suspension bridges: The geometric source of athletic power.

To say “stand up straight” is a bit of a misnomer; the body is made up of a series of curvatures.

When you look from the side at someone standing up straight, you’ll see that their body actually follows a curve which begins at their heels and ends at the top of their head. Think of a hunting bow: when a bow is strung, the bowstring holds both ends of the bow together, allowing the structure to store a magnificent amount of potential energy, to be released when an arrow is loosed. The extensor muscles of the body (hamstrings, glutes, and back muscles) perform largely the same function as the bowstring:

bow 1

The quintessential proud or dominant posture is achieved by tensing the extensor muscles to align the majority of the bones in the body to create a series of arches, or bows. By maintaining tension in this way, the body creates a firm (yet dynamic) structure. This isn’t a spurious analysis: throughout the history of architecture, arches have been the quintessential support structure. For these same reasons, suspension bridges are built in high-wind and earthquake-prone areas: because using tense cables to support the structure not only maintains the bridge’s shape very well, but does so despite the power that wind or seismic events can exert on it. By contrast, a bridge that is completely rigid through and through would be far less resilient. 

Because the body is a moving system (as opposed to a rigid system), it creates these arches in order to more easily engage with the forces that routinely interact with the body, such as the force of gravity and the kinetic energy generated during exercise.

Continue reading The human body as a system of suspension bridges: The geometric source of athletic power.

The irony of the “fitness” identity: a praise of CrossFit, and a critique of its founder.

CrossFit, in name and on paper, is an excellent form of exercise. CrossFitters achieve fitness through emphasizing the mobility and functionality of the body across many varieties of athletic skill. In my opinion, the most physiologically sound version of a human body is one in which its strengths and abilities are expressed alongside a capacity for sustained, safe, and healthy endurance running. CrossFit doesn’t emphasize the development of the “aerobic engine” necessary for that kind of endurance running. That may be my one complaint against the sport. That aside, CrossFit is as good as it gets.

As a runner, I live with the hopes of becoming fast, regardless of who’s next to me, or where I go in the world. Because of that dream, the training philosophy of CrossFit—and many of its exercises—have become a staple of my training. My simplest interpretation of the CrossFit philosophy is that a single-event athlete will be better at their best event if they are a multiple-event athlete. In other words, ability has to be cultivated across a breadth and depth of skills, for “fitness” to emerge. As the website says:

“By employing a constantly-varied approach to training, these functional movements at maximum intensity (relative to the physical and psychological tolerances of the participant), lead to dramatic gains in fitness.”

It’s there in the name: CrossFit.

Ever since hearing of CrossFit, I do more and more classic weight exercises such as the barbell squat—and have consistently made gains in speed, power, and endurance over “purer” runners. I’ve incorporated jumping rope as the ultimate plyometric and cognitive exercise: the amount of repetitions that you can put out during a jump-rope session do wonders in honing your body’s ability to exert force against the ground, and receive it safely.

CrossFit’s definition of “fitness” is the most useful I’ve ever heard of—or that CrossFit is aware of, too; it says it right there on the website. “Fitness” is defined as:

“Increased work capacity across broad time and modal domains. Capacity is the ability to do real work, which is measurable using the basic terms of physics (force, distance and time). Life is unpredictable (much more so than sport) so real world fitness must be broad and not specialized, both in terms of duration and type of effort (time and modal domains).”

This is a great definition. I can’t visualize a world where CrossFit practitioners would be anything but the supreme examples of health, if that philosophy (and this definition of fitness) were followed to the letter, and taken to their logical extreme. I’ll begin by breaking down their philosophy—(I’ll do the definition of “fitness” in a bit)—so you can see why:

Employing a constantly-varied approach to training. Taken broadly enough, this means that the concept of “training” can easily be expanded to encompass activities that aren’t typically known as “exercise.” Nutrition, for example. Developing the functional components of nutrition would be a boon to the athlete’s net power output. Seeking spiritual, social, and emotional health for their purely functional benefits, is perfectly encompassed under this philosophy.

I think back to Chris McDougall’s book, Born to Run, in which he quoted the kinds of advice that legendary track & field coach Joe Vigil would tell his athletes: “Do something nice for someone.”This is a varied  approach to training. And a coach like Vigil would only incorporate it because it helped take his athletes to another level of athletic achievement. (These kinds of “unorthodox” approaches are common across the 1% of the elite: Bruce Lee trained “breaking habits,” and when that became a habit, he would break that one too).

Let’s analyze the phrase “movements at maximum intensity, relative to the physical and psychological tolerances of the participant.” This phrase implies a systemic understanding, in which the athlete is not perceived to be a machine, but a person with a unique reality, a unique set of circumstances, that can influence their athletic output at any given time. This is a call to empathy for of the trainers, and a call to self knowledge for the athletes.

Let’s move on to the definition of fitness: “Increased work capacity across broad time and modal domain.” On the surface, this means that the athlete should have speed, power, and endurance.

But let’s look at the definition a little bit more deeply. Especially in conjunction with the phrase “relative to physical and phsychological tolerances,” I could easily argue that one such “broad time domain” is a lifetime. In other words, embedded within the very definition of “fitness,” as put forth by CrossFit, is the argument that health entails fitness: there must be health if the athlete will be “fit.” Under that definition, losing “fitness” because of a lack of health means that what seemed like fitness wasn’t fitness, but was instead a façade—a social performance of fitness that broke down under the assault of time.

Only in view of that impressive philosophy can this next part be so damn ironic. I recently read a New York Times article critiquing the obsession of Westerners with physical fitness. The article quoted extensively from an interview with Greg Glassman, CrossFit’s founder. The NYT article’s critique of the fitness craze centers around Glassman’s 2005 admission that CrossFit had become a breeding ground for an exercise-induced condition called rhabdomyolysis, which can lead to kidney failure. According to the New York Times article, Glassman viewed the rampant “exertional rhabdo” problem as part of CrossFit’s “dominance over traditional training protocols.”

This is absurd—and not only in reference to a “reasonable person’s” idea of fitness.

The idea that a dangerous kidney condition is a marker of fitness goes against CrossFit’s stated definition of fitness—the potential for increased work capacity across broad time and modal domains. Furthermore, persevering through exercise despite the onset of rhabdomyolysis is a serious breach of the idea that intensity should be measured relatively to the physical and psychological tolerances of the participant.

But wait! There’s more.

According to the NYT article, Glassman also wrote: “Until others join CrossFit athletes in preparing…the exertional rhabdo problem will be ours to shoulder alone.”

You just can’t make this stuff up.

Glassman’s writing reminds me of something I read in a book called The China Study, about the physiological effects of eating animal protein (specifically, of its contributions to cancer and heart disease). In that book, the authors quoted a physician saying that heart disease was the burden of man, and that only “the effeminate” would pursue other, healthier, avenues of eating to escape it.

In these two examples, these “experts” on health have structured their identity around the ill effects of their chosen activities! When the marker of being “a man” is heart disease, it becomes impossible for anyone subordinated to those social circumstances to seek a healthy lifestyle.

Similarly, if it is the presence of exertional rhabdo that makes CrossFit so “superior”—at least in the eyes of its founder—then the presence of rhabdo in the athlete quite naturally becomes the high watermark of achievement. In direct opposition to the stated philosophy and mission of his fitness empire, Glassman has set up a dangerous situation for his followers: if they haven’t suffered the ill effects of exercise, that means they haven’t been training hard enough!

The problem here isn’t CrossFit. It is the discrepancy between what CrossFit proposes on paper and what its founder touts as the “CrossFit identity.” This should serve as yet another reminder of the fact taht there is often an abyss between what a particular training regimen does for us, and what it is supposed to do. Often, the problem isn’t in how we follow it, but in how we don’t—or more specifically, how we overshoot.

If the reasons for which we overshoot are based on a set of social beliefs that we have created around us—that have long since been divorced of any knowledge of the world (or were never based on that knowledge in the first place)—we are treading dangerous waters. Often, we can’t even see them. Not when it counts. We might be able to laugh at those ironies over a couple of beers, but once in the gym, they will consume us and guide our efforts. If we have taken an identity upon ourselves, all of our exertions will be in service of that identity.

And if that identity centers around illness or overtraining, it doesn’t matter what athleticism we have cultivated as a short-term side-effect of our exertions. We will lose it.

We live and train in social systems. Often, those systems do no favors to the physical, psychological and biological systems on which our athletic output is predicated. Our identity—which is based largely on the demands of that social system—will shape our choice of exercises, the intensity, duration, and frequency with which we do them, and the efficiency of our rest and recovery. What’s on paper never reflects the reality of the situation. The social system, via our identity, informs the effectiveness of our athletic development. 

Let’s make sure that social system, and that identity (or lack thereof), is the right one.

UPDATE: For an answer to the NYT article critiquing “extreme fitness,” see this Outside Magazine article. I’d love to hear your thoughts and answers to any of these articles, and this blog post, in the comments.

Meditation: an epic training tool. Slow yourself down to become faster.

Meditation calms the mind. It lets us collect the various parts of ourselves and bring them together to work on a specific objective. That objective can be to develop our athletic expression.

In training and life, it often happens that things just aren’t going our way. We’re in such a hurry that we stop functioning well: we drop a vase, and then we have to hurry even more to clean it up. The cycle just quickens—hurry only begets more hurry.

Paradoxically, in order to move faster, we have to learn how to slow down. But when the pressure’s up, that’s usually the very last thing we want to do. The ability to defuse those impulses is what separates good performers from the very best. That’s why you often hear in the Special Forces: “slow is smooth, smooth is fast.” As I’ve discussed before, elite performers understand that when there is too much speed in a system—when they get the jitters—things start to go bad. On the other hand, when the non-elites see the elites moving faster, they assume (based on their mental models) that it is because the elites are putting more speed into the system.
Continue reading Meditation: an epic training tool. Slow yourself down to become faster.

Training starts with an idea. Make sure that idea is correct.

More and more of the newer science seems to fly in the face of conventional wisdom.

This trend brings into question everything that we know—and more importantly, everything that we think we know.

Sitting in the armchair, this isn’t a problem. If we theorize about the differences between barefoot and shod running, and never actually go out for a run, never actually pushing the system to observe its behaviors, theory seems like a great idea. It seems like all we need to do.

But we don’t do theory for its own sake. The point of theory is for it to help us in practice. So we go out and run, and if our mental model—our suppositions, assumptions, beliefs, and beliefs about our knowledge—is different from how the world actually works, the discrepancies between that mental model and the real world will begin to show up as pain on our knees.

One of the reasons I love running is because out on the road, mental models accelerate towards the ground at 32.2 ft/s2. The collision between our mental model and the ground is as close to truth as we lay athletes are ever going to get.

Writing this was brought on when I read a post by The Gait Guys, talking about achilles tendonitis, and possible solutions to it. Conventional wisdom would suggest that the way to reduce achilles tendonitis is by shortening the achilles tendon, a.k.a. raising the heel on the shoe.

Why? Simple. If you raise the heel of a shoe, you loosen the achilles, so it’s not carrying the weight of the body anymore. By all counts, that should do the trick.

(It doesn’t).

But that’s the problem. This solution was thought up in the armchair, and never tested in practice. Theoretically, it should work. But that’s because a theory is a mental model: a self-contained little idea of the world. Given the rules of that model, raising the heel is an excellent solution. Now, all that has to happen is for that model to coincide with the realities of the body.

In academic circles, those kinds of suppositions are known as “pipe dreams.”

The body isn’t just a series of simple machines put together. It is a complex entity, built from stacks and stacks of systems, each doing a different job. And the job of one of those systems is to regulate impact force by using touch receptors.

Because that subsystem—the central nervous system—is also at play, the behaviors of the body/system will be “unpredictable.” But it’s only unpredictable because the theoretical model doesn’t account for that subsystem.

When we account for this system, its actual behavior seems a lot more reasonable: in order to maintain tension on the achilles, the body raises the foot as the leg approaches the ground. However, this means that the leg can accelerate for a longer period of time, making the initial contact forces that much more powerful.

We need to understand the systems we’re playing with.

We need to go out and test them, and get a feel for their behavior. The phrase “push the envelope” comes from test pilots: every one of those pilots climbed into the cockpit fully aware of the mathematical model that predicted the flight capabilities of the airplane—also called the “flight envelope.” Pushing the envelope literally means taking the plane into unpredicted territory—literally pushing the aircraft beyond what the mathematical predictions say that it can take.

Dangerous? Yes. Necessary? Absolutely. The reason flying such a safe mode of transportation these days is because a few brave and knowledgeable people understood that there is a big discrepancy between the armchair and the road—between the predictive model and the actual system.

Let’s take these lessons and put them into our running. Let’s push our own running envelopes to see what sorts of behaviors our body exhibits—and then modify our training and adapt accordingly.

Don’t confuse exercise with training!

Outside Magazine just came out with an article that talks about the difference between exercise and training. The contention is that exercise is more of a social activity, while training focuses on the development of the body.

The article cites an interview with Mark Rippetoe, the first coach to give up his National Strength and Conditioning Association credential. Rippetoe believes that one of the problems with the fitness industry is that they develop and market exercises to appeal to the consumer, not to develop the body—and worse yet, they either obscure this distinction intentionally, or are happy it remains in neglect.

I am excited that Outside Magazine is grappling with these distinctions, and promoting knowledge for the lay athlete. Because these marketing and social forces shape and ultimately define our training, our athletic development is at their mercy. The key to dealing with them is knowledge: by “trusting” in an exercise or a diet, we are sure to be playing to someone’s marketing scheme.

Ultimately, simplicity wins out—but it is impossible to market. There will never be an exercise better for developing aerobic power than endurance running. Since it is simplicity that makes it work, no amount of sophistication will do the trick. The same goes with strength: floor and barbell exercises are by and large all you need—and perhaps a simple weight such as a kettlebell.

So the fitness industry has no choice but to fabricate a story as to why so much variety and so much complexity is so important. Buying into this media machine means that while we look for ever more obscure and esoteric exercises, the athletes that keep it simple will be faster and stronger—and the reasons for their speed and power will remain completely obscure to us: the media veil that the fitness industry succeeded in putting over our eyes filters those reasons out of our awareness.

As Bruce Lee said:

“It’s not about the daily increase, but the daily decrease. Hack away at the unessential.”

He said this for a reason. It’s up to each of us to explore why.