Tag Archives: resilience

The human body is an athletic machine.

A growing body of evidence is telling us that exercise is one of the most important ways to prevent all sorts of chronic diseases. This list includes (but is not limited to) various cancers, diabetes, clinical depression, and osteoporosis.

Although we could just leave it at that, and say “exercise if you’re chronically ill,” we can take this evidence a little bit further: it tells us something very important about the relationship between exercise and the human body.

What chronic diseases mean for the body is that our systems aren’t resilient: the very same problem springs up again and again, and our body has los the capacity to change that. Because by exercising, we can reduce the risk for these diseases, this tells us something about the optimum state of the body: when we don’t exercise, our risk of chronic disease begins climbing. When we don’t exercise, our bodies stop being resilient. This means that the body’s resilient state is one in which it’s constantly exercising.

There is another growing body of evidence that suggests that cognitive flexibility and neurogenesis (the creation of neurons and neural pathways) increases during exercise. This means that, both physiologically and psychologically, exercise increases the body’s capacity to deal with new, novel, and unexpected stresses. Simply stated, exercise helps the brain and the body meet the demands of the world on the world’s own terms.

Thanks to this evidence, we can infer something about the body: if the human body and human mind’s resilient state corresponds to a state of constant activity and exercise, then the body isn’t meant to be passive, at rest, and unchallenged. The human body’s baseline state is one of exercise—one where it’s being constantly challenged physically, physiologically, and mentally.

In other words, the human body is an athletic machine.

This conclusion tells us something very interesting: the prototypical western, sedentary human doesn’t reflect the optimum state of the human body. And to snuff out a possible counterargument before it arises: we haven’t “evolved” out of the athletic roots that were so important in our early history and prehistory. Socially, we may be an entirely different animal (although many, myself included, would argue against that—we are as reactive, addictive, violent, aloof, and oppressive as ever). But physiologically and psychologically, we’re basically the same. If we had in fact evolved beyond those athletic roots, exercise would have no causal relationship whatsoever to chronic disease.

Which in turn opens up a very interesting line of inquiry: the pool of subjects used when we move new cures and treatment methods into human testing is highly skewed: we test these methods and cures on a population that, while ostensibly representative of the western, sedentary human, is not representative of the ideal—i.e. resilient—state of the human biological and psychological system.

What this basically does—and has done—is to get us into a mindset where prevention doesn’t exist, and cure is the only option. In systemic terms, prevention means increasing the resiliency of the system. Once that system is resilient beyond a certain threshold, there still may be some ailments that need curing. But when the prospect of increasing resilience is completely off the table—or worse, marketed as an “alternative,” and not as the necessary first step towards a solution—everything needs curing.

A question of systemic resilience: is it more “efficient” to run shod than barefoot?

The idea that running barefoot offers a metabolic advantage over running shod may be an “appeal to nature” fallacy.

Although some studies have found that running barefoot is actually “more efficient,” there have been a host of other studies that contradict those results.

So we can’t say for sure.

In a 2012 study titled Metabolic Cost of Running Barefoot Versus Shod: Is Lighter Better?, Franz et. al. set out to debunk the claim that barefoot is indeed more efficient. In a nutshell, their results found that not only did barefoot running have no metabolic advantage over running shod, but actually seemed to be more metabolically costly to do so. It has been suggested by several studies that the reason for this added metabolic cost is because of a “cost of cushioning.” According to these studies, the body is making an effort to absorb impact when running barefoot, that it doesn’t make when shod (more on this later).

I largely agree with the research question, experimental design, and results of Franz et. al. But reading this article stirred up several theoretical issues that don’t have much to do with the article in particular, but are important in terms of how the shod/unshod and hindfoot/forefoot striking debates have unfolded, particularly regarding what the terms “efficiency” and “better”—as in the title of the study mentioned above—have come to mean in this debate.

Franz et. al. begin the article by writing that “advocates of barefoot running claim that [barefoot running] is more “efficient” than running in shoes.”

First I’ll address the question of what we mean when we say “efficiency.”

It’s important to be clear that the advocates that Franz et. al. cite (Richards & Hollowell, authors of The Complete Idiot’s Guide to Barefoot Running and Sandler & Lee, authors of Barefoot Running) are using the classical definition of “efficiency” as do Franz et. al.—meaning that they claim there is a lower energetic cost to barefoot running. That claim may well be a fallacy, and Franz et. al. are right to debunk it.

But I want to draw attention to a different use of “efficiency,” which will eventually get us to analyze what we mean when we say that one function (say, shod running) is better than another (say, barefoot running). In order to do this I need to bring in one of my favorite concepts from systems thinking: resilience.

One of the hallmarks of a resilient system is that it is built out of many tightly-coupled feedback loops, which basically mean that there is a lot of movement and interaction between its various parts. And for that movement to exist, the resilient system must be spending larger quantities of energy than the less-resilient system.

(This idea is rooted in thermodynamics: the movement of molecules and atoms correspond to the amount of energy stored in a certain space, i.e. the temperature of that space). The idea that greater movement can only be produced by a greater use of energy is generalizable to basically everything.

Note, however, that the causal relationship between resiliency and increased consumption of energy only goes one way: all other things being equal, a more resilient system must be using more energy than a less resilient one, but a system that uses more energy than another is not necessarily more resilient.

In the classical definition of “efficiency” that Franz et. al. and the barefoot running advocates are using, the resilient system is less efficient—i.e. it is at a metabolic disadvantage, since it uses more energy—than the non-resilient system. It isn’t very useful to speak in terms of “efficiency” when we’re talking about complex behaviors like athletic performance: for example, when the body finds itself in crisis, it will begin shutting down major organs to conserve energy. And for every organ that it shuts down, the less resilient it is: it becomes less and less able to cope with new and unexpected crises. Is this more “efficient” in any reasonable sense of the word but the classical? Not really.

“Efficiency” in the classical sense has never been the goal of human running. In Waterlogged, Tim Noakes explains how running on two legs has a much greater metabolic cost, across the same distance, than running on four legs, and yet, because humans run on two legs, we are capable of running down antelope and other ungulates in the desert. (The advantages that running on two legs offers are thermodynamic, but that’s a story for another time).

Simply stated, if efficiency was what the human body wanted in the first place, we would have never gotten off all fours. Actually, we would never have become runners at all. But we did. So there has to be more to this story. By standing on two feet, there has to be another problem that we were trying to solve beyond “efficiency.” That problem is most likely how to be resilient in the performance of particular function: human endurance running.

The human body—like any system—has other goals beyond pure efficiency. Indeed, one of the primary goals of the human body is redundancy. Studies have shown that even when we exercise at maximal intensity, only a fraction of our sum total muscle fibers are recruited. In the classical sense of “efficiency,” you could say that it is less efficient to be redundant, since more energy and nutrients must be spent building these redundancies instead of using them for athletic performance.

All of this gets us to what we mean when we say “better.” In a very real way, (and for a variety of reasons), it isn’t “better” for the human body to be “more efficient” in the classical sense. It’s better for the body to be more redundant, and more resilient. In theoretical systemic terms, the fact that the number of active “feedback loops” increase when  running barefoot—since the touch receptors on the soles of our feet “feed back” information to our muscular system, which works to decrease impact—is indicative of the likelihood that the unshod system is more resilient than the shod system.

touch rec m

Furthermore, when we blow up the term “efficiency” onto the large scale (divorcing it from its classical meaning), we can ask ourselves: in time and energy, what are the advantages of protecting the system, over not doing so? According to the literature, wearing shoes doesn’t protect the system in its entirety, beyond the skin on the sole of the foot: It has been shown consistently that shoe cushioning doesn’t affect peak impact force, only our perception of that impact. Peak impact force is alleged to be the main cause of repetitive stress injury in runners. While it has also been shown that in hindfoot-striking, shoe cushioning decreases loading on tissues), loading is a very different issue, with different consequences to injury, than impact.

Given that running shod reduces the activity of our cushioning mechanism, it would be extremely informative to do a long-term study on the amount of impact absorbed by the tissue (as opposed to loading), when the cushioning mechanism is deactivated. (Short-term studies already provide evidence that impact forces are indeed reduced when running barefoot as opposed to running shod). In turn, it should be explored how the increased impact translates to tissue damage, recovery time, and ultimately time not spent developing athletically.

In these terms, we may yet discover that it is more “efficient” for the body to run barefoot than shod. Being this the case, we could say that it is “better” for the system to run barefoot than shod.

Whether this is actually the case remains to be seen. What we can do at this point is to observe how our words shape our perception, attention, and inquiry, and what it is that systemic insights can bring to the table, both theoretically and with an eye towards future experimental research.

From maximalist to minimalist footwear (and back): a lesson in resilience, and in “shifting the burden” systems.

The popularity of the trend of minimalist (zero-drop, low-cushioning) shoes has coincided with a sharp increase in running injuries, according to some sources. This has caused a large amount of community, media, and legal blowback on minimalist shoes, the most salient of which is the recent class-action lawsuit against Vibram, for misleading advertisement.

Misleading advertisement should always be punished. Vibram peddled their five-fingers shoes as the solution to running injuries. They are not. They should never have been advertised that way.

But this blowback has created an unfortunate tendency: blaming the minimalist shoes themselves as the cause of injury.

They aren’t the cause. Although this may seem contradictory, it is the fact that so many people get injured when switching from “maximalist” (shoes that are highly-cushioned; often with an elevated heel) to minimalist shoes—but not vice versa—that suggests that minimalist shoes are better for the biomechanics of human running.

This apparent contradiction can be resolved—but in order to do that we must look at the issue from a systems thinking perspective. And for that, we have to begin with the concept of “resilience.”

Continue reading From maximalist to minimalist footwear (and back): a lesson in resilience, and in “shifting the burden” systems.

Running form of elite female runners—Analyzed!

I’m posting about a great video I found on YouTube, which analyzes the most important gait components of elite female marathoners. The author of the video analyzes the things that make or break someone’s stride, race, or body.

Here’s the link.

Watch it; it’s well worth your while!

Key points:

  • Runners need muscle resilience in order to maintain tension in the tendons.
  • The lower the amount of force produced by muscle contraction, and the more it is produced by passive tendon release, the more powerful the runner will be.
  • Certain types of gait (gliders vs. gazelles) will aid in efficiency, and boost speed.