Tag Archives: running speed

Synthetic perspectives on the running human body: Improving running economy is not the be-all, end-all.

Looking at the body from a synthetic perspective is a lot like looking at it from an evolutionary perspective.

As I described in a previous post, a “synthetic account” of the body—there is no such thing as a “synthetic analysis”—is one that looks at the human animal in its whole context in order to understand why it does what it does, (and what it is attempting to do).

A few theories have a strong synthetic component: Pose Method (which looks at the mechanics of the body in the context of the Earth’s gravitational field), Tim Noakes’ Central Governor Theory as well as his discussion on thirst and hydration, and Phil Maffetone’s MAF Method (which observes that prolonged athletic achievement cannot be produced without safeguarding and promoting the body’s health).

But most accounts of athletic performance out there look at the human body in a very narrow analytic sense. They typically only measure a few variables germane to athletic performance: running economy (also known as efficiency), speed, power, endurance, etc. In other words, they look at the body in the same way you might look at a race car: you analyze how the race car functions and how it performs while on the track. But you don’t worry very much about what it’s doing or what’s happening to it elsewhere.

In this vein, it is often argued that one running form (one particular set of kinematics) is better or more advantageous than another on the grounds that it is more efficient. Take a look at the title of these articles: A Novel Running Mechanic’s Class Changes Kinematics but not Running Economyand Effect of a global alteration of running technique on kinematics and economy. 

The body has to worry about a number of things beyond running economy: it has to save itself for future battles, quickly rest and recover in order to fulfill any number of foreseen and unforeseen functions beyond the scope of the athletic event, like for example to be unstressed enough to be able to engage smoothly and creatively with social environments.

So, when sports scientists come along and suggest that the best form for a particular athletic movement is what’s most efficient (in the sense of minimizing energy expenditure during the athletic event), they are ignoring some of the body’s broader imperatives.

Why? The simple answer is that the body’s lifelong goal of protecting itself is far more important to it than the very bounded goal of winning some particular athletic event (or chasing down some particular deer) at any cost. It doesn’t just want to get the deer. It wants to benefit from having gotten it.

What does this mean? That benefiting from getting a deer means that it might be better to wait until a slower deer comes by. Let’s suppose you don’t have enough energy to run at the speed and distance you’ll need if you want to catch the deer you want, and still be able to run with the form necessary to protect your body while doing so. You might end up catching the deer, but you might also end up with a blown knee or a damaged achilles. You might be put out of commission for a month or two.

Now let’s suppose that someone else uses a slightly more expensive form—expending more energy to maintain proper movement. They’ll be proportionally slower, but they’ll also be able to move much more and recover much faster. Over time, they’ll become the more powerful runners. Three or four years down the line, they’ll be catching much faster deer, much more consistently.

Of course, it’s important to be as efficient as possible: refining the way muscles work, and aligning them to work with gravity and impact forces (and not against them). But pursuing efficiency is not at all convenient past the point where the only way to get more efficient is to risk tearing tendons, degrading cartilage and connective tissue, and abrading bone.

This brings up another important point: while the safest form has a high degree of efficiency, the checks and balances necessary to produce it (and maintain it at high speeds or over many miles) also means that it is typically more expensive to produce than the “most efficient” form.

 Let’s say that the runner who blew his knee by going after the very fast deer has form X. Form Y might be more expensive, but it would also allow him to get faster over time. But let’s say that instead of getting injured by going faster, he decides to only chase the slowest deer, or run exclusively for fun. He might display the same injury rates as runner Y. But if we only look at injury rates without looking at speed, or running economy without looking at speed, or efficiency without looking at performance improvement over time, we might end up concluding that the wrong ways of doing things are actually better (or worse, that there is no “best” way of doing something).

Being faster (or fast for longer) is great. But that’s not good enough either. The same things that we said about efficiency can also be said about speed. Running with the form that lets you be fast safely, recover quickly, and improve consistently, is waaay better than “just running fast.”

Running form of elite female runners—Analyzed!

I’m posting about a great video I found on YouTube, which analyzes the most important gait components of elite female marathoners. The author of the video analyzes the things that make or break someone’s stride, race, or body.

Here’s the link.

Watch it; it’s well worth your while!

Key points:

  • Runners need muscle resilience in order to maintain tension in the tendons.
  • The lower the amount of force produced by muscle contraction, and the more it is produced by passive tendon release, the more powerful the runner will be.
  • Certain types of gait (gliders vs. gazelles) will aid in efficiency, and boost speed.

How philosophy powers athletic achievement: a personal anecdote.

Earlier this summer I ran the HTC race in Oregon, a well-known, hundred-plus mile relay. I was part of an excellent and enthusiastic Reed College team. I was given the more . . . motivating, if you will, leg of the race. It consisted of a set of three stretches—legs 5, 17, and 24—totaling about 21 miles. The last stretch included an 850-ft hill. I engage with running as a form of expression, and not a form of propulsion. Nowhere does the contrast between expression and propulsion become more stark than when a single group of people—each and every person with their own metaphors, mental models, and training histories—run together up a hill in heat that closes in on the double digits.

As was the case on that particular hill.

Now, I’m not the fastest runner out there. And, I gotta say: should precedent and probability have the final say, I’ll never be. But over the years, I have developed my running to be quite effortless—and therefore, quite fast. I like to run without effort, and fully engaged, like a well-oiled machine where every tiny part is playing its part in exactly the right way, all the pistons moving in perfect synchrony, all of the forces which course through my body coursing through it in exactly the right vectors. This is a story about what effortlessness means, what it does for you, and what it feels like. But more importantly I share what are, in my opinion, the most basic ideas of how to replicate it it.

Continue reading How philosophy powers athletic achievement: a personal anecdote.

Gravity: The dilemma of the “slow runner.”

Some of us just want to run slowly. We don’t really want to get fast—we just don’t care.

That’s okay. We’re all entitled to our own ways of running. But while we do that, we should recognize that there are some ways of running that observe the realities of the world (and some that don’t). Someone I met once said:

All models are wrong, and some are useful.

That goes for any and all of our ideas, including our body’s idea of what is the best way to run. No idea will ever be able to exactly model the world. But some are more useful than others—and the useful ones are useful because they account for such realities with a certain success.

We must stand in observation of the reality that, when we run, the most important force we will interact with is The Force of Gravity. The quality of our interactions with gravity will determine whether we become injured or not (among other things, like speed).

In systems thinking terms, we move and live within a particular physical system. Inside of that system, there are certain constant and variable forces which the body must be capable of interacting with. If it isn’t (yet) capable of interacting with those forces, and we push it to do so, we will compromise its integrity.

In that system, if we push off the ground, we will accelerate back to it at a rate of 9.78m/s² (32ft/s²). Which means two very important things: first, that the longer we are suspended in the air, the more we will accelerate. Second, in order to maintain bodily integrity, our muscles (but also our bones and connective tissue) must be strong enough to resist the stresses incurred by interacting with that magic number.

What this amounts to in athletic terms is that body must have (1) very strong muscles, capable of responding explosively in sustained activity, and (2), the ability to maintain the center of mass (the torso) relatively stable throughout the run. In other words, it must have the ability to make the torso rise and fall as little as possible. 

How does the body achieve this mechanically?

By moving the legs faster, i.e. increasing the stride rate (to somewhere around 180 steps per minute). If we can make our feet strike the ground 20 milliseconds (.02 seconds) faster than before, that would be .02 seconds less that we’d be accelerating towards the ground. Stronger and more powerful muscles (to move our legs faster) mean that we’re accelerating less towards the ground. But here’s the kicker:

It also means that they are more capable of withstanding the stress placed on them by gravity.

But wait: there’s more!

As Owen Anderson writes in Running Science, if we could make a 20 millisecond (ms) improvement between footfalls, that would constitute a time improvement of 756 seconds across the duration of a marathon—in other words, an improvement of 12 minutes and 36 seconds! As Anderson himself writes:

[That is] an almost infinitesimal change and therefore one that most runners can easily make.

In the interest of beating this point into the ground (pun intended), that’s 12 minutes and 36 seconds we’re not accelerating towards the ground. And remember the thing about acceleration: the first 20 milliseconds and the last 20 are not created equal.

If we’re running at 150 steps per minute, we might be in the air for 60% of the gait cycle. Doing the calculations for you, we’re accelerating towards the ground for 116 ms.

At the end of the first 20 ms of acceleration, we’d be going at a speed of .09 m/s second (.29 f/s).

At the end of the 116 ms of acceleration, we’d be going at .056 m/s, or 1.64 f/s.

But if we make a 20 ms improvement from 116 (in other words, 96), our maximum falling speed would be of 0.47 m/s, or 1.54 f/s.

Let’s reiterate: A 20 ms improvement from 116 ms means that the runner is going a tenth of a foot per second slower upon hitting the ground, and it’s only that way because of muscles that are stronger.

If take the time and energy to make our bodies more capable of interacting with gravity, we will inevitably end up being the faster version of ourselves.

Let’s internalize this, because it really does constitute the minimum passing grade of the “entry exam” for a runner:

Being strong enough to interact with gravity is the minimum power requirement for a human runner.

Although elite runners have muscles that are much more powerful than necessary to deal with the requisite 9.8 m/s², that number is where the laws of physics and the Earth’s mass have set the bar for human runners. That is our system. Those are its requirements. Let’s stand in observation of that fact.

There are two good ways that I know of, that can get us to meet those requirements. The first is by jumping rope as I’ve described, and the second one is an exercise in this video by Dr. Mark Cucuzella (at 6:09).

(By all means, look at the entire video—it’s very engaging and informative).

Now, go talk to gravity until you’ve gotten to know it like an old friend.

UPDATE: You can find a couple of good discussions on stride rate and running speed here and here.