Tag Archives: tendons

Running form of elite female runners—Analyzed!

I’m posting about a great video I found on YouTube, which analyzes the most important gait components of elite female marathoners. The author of the video analyzes the things that make or break someone’s stride, race, or body.

Here’s the link.

Watch it; it’s well worth your while!

Key points:

  • Runners need muscle resilience in order to maintain tension in the tendons.
  • The lower the amount of force produced by muscle contraction, and the more it is produced by passive tendon release, the more powerful the runner will be.
  • Certain types of gait (gliders vs. gazelles) will aid in efficiency, and boost speed.

Deconstructing “flexibility.”

Throughout our lives, most of us have heard that it is extremely important for us to be “flexible,” for a variety of reasons. Off the top of my head, I’ve been told that flexibility is important to make movement easier, so that my joints don’t deteriorate, and so that I don’t get hurt lifting heavy objects. This is excellent advice. But the problem is that basically all of us go about achieving greater flexibility in exactly the wrong way: by stretching, or more specifically, static stretching. And that is because we don’t understand the concept of flexibility in a mechanically useful way.

One of the main physiological problems of westernized people is poor biomechanics—a phemonemon that basically boils down to the idea that the muscles across our bodies are badly synchronized. Simply stated, they don’t know how to work well together, and when they are subjected to trying circumstances (such as exercise or age), the mechanisms freeze up and become damaged.

For some non-athletes, stretching may help initially. In a very low-risk environment, stretching helps these frozen mechanisms because it increases the net joint range of motion (ROM). This means that the joint can go just a little more before it gets hurt. But that doesn’t solve the problem: the muscles haven’t become synchronized; we’ve only ameliorated the symptoms because we’ve created ROM by isolating the muscles (due to stretchier tendons and weaker muscles), instead of developing their synchronization.

This is a classic case of a systems management problem called “shifting the burden.” We have a perceived need to increase flexibility (because of a particular set of assumptions), and we shift the burden of flexibility away from synchronization and towards isolation. When the symptoms ameliorate, we think that the problem is solved, and we subject it to higher-risk circumstances, such as sports. Soon, we find ourselves caught in an unending roller-coaster of injury.

We can solve this problem. But in order to do so, we must deconstruct our notions of “flexibility.”

Continue reading Deconstructing “flexibility.”