Tag Archives: running form

Running form and aerobic training

Training at a low intensity—often referred as “aerobic training”—is extremely important to allow the body a respite from the stresses of high-intensity training, and to develop the mechanisms that increase its resilience. We know that much.

But when training aerobically is our only focus, even during a period of “aerobic-only” training such as base-building, we may be hindering our improvement: improving our running form, by reducing the difficulty of running, also reduces the stress on our body. Because stress suppresses the function of the aerobic system, taking the time to develop our form hastens our aerobic gains.

The standard set by The Pose Method is the best example of “good running form,” as I see it. I fully adhere to the notion that pursuing a standard—the right standard—of running form is the quickest and surest way to reduce the difficulty and stress of running. But I also believe we don’t need to go as far as mastering the tenets of The Pose Method to reduce stresses and bolster our aerobic training.

This is because of a concept called “power leaks.” Running is all about moving the center mass of the body forward in a straight line. Some vertical and horizontal oscillation can’t be gotten away from. However, minimizing that up-down and side-to-side movement lets more of the body’s energy to go towards moving it in a straight line, and removes the need to spend energy balancing the body’s odd movements.

Power leaks, in essence, are those jerky movements that happen in odd places of the body—a sharp outward rotation of the knee combined with an upward collapse of the hip, which causes the weight of the body to fall to the outside. The body then has to recover, shifting its weight back in, to produce the next step.

When this extraneous weight shift and joint movement happens, the force of the footstrike travels through the body at an odd angle. Muscle fibers, and tendon and bone tissue are meant to move in alignment with the major force the body experiences: gravity, which pushes the weight of the body downward, and the opposite and equal ground reaction force the body experiences when the feet are on the ground. When tissue does not align with force, the likelihood of injury skyrockets.

“Stress.” is the body feeling that its likelihood of injury increases. Therefore, its defense mechanisms kick in. As a result, it does one of two things:

  1. It slows the body down in order to mitigate those forces to a comfortable level.
  2. It kicks up the stress response (and the heart rate), because it remains in a situation where there is a dangerous challenge to its physical integrity.

The increase in heart rate (and decrease in speed) is commensurate to the magnitude of the challenge.

Here’s the big lesson: if you want to reduce the body’s stress response to a particular task, increase its skill level.

Of course, there are myriad other stresses that conspire to wreck the body’s aerobic function: environmental, nutritional, even social. But the physical stress of poor alignment, due to the lack of skill required for the task, may be the larger part of the equation.

Running is an exceedingly complex task, biomechanically speaking, and it is performed by a full-fledged, multifaceted human, with imperfections and worries and commitments. Very few people have the privilege to be monks. Very few people have the privilege to increase their sleep, move far away from the chemicals endemic to the urban sphere, and detach themselves from the social preoccupations that come from being social animals.

But every one of us who has the time to run also has the time to perfect our running form. The problem is that few of us are aware that running form can be perfected, and that it is a way to reduce the stress of running. Misalignment is a real thing.

Alignment, or a lack of it, determines whether three astronauts get to return to Earth (or not). It determines whether our knees and hips survive the gauntlet of a hundred thousand steps we take during the marathon. It determines whether the body feels relaxed and competent when it analyzes its capability of performing a task.

“Aerobic training” isn’t the only way to approach the functionality of the aerobic system. Improving our form can do that too.

What is the role of efficiency in athletic performance?

In various social media, the following observation was made several times about my last post: efficiency plays an important role in athletic performance.

Yes. Efficiency is an essential indicator of athletic performance. However, all efficiencies must be in service of greater power production, not simply sought after without a good reason: efficiency has no real benefit when divorced from other variables.

Here’s a quick but illustrative example: It takes a lot more energy to keep a spine straight, with hips, head, and shoulders evenly stacked, than it does to let that spine develop a pronounced thoracic kyphosis—the spine and shoulder curvature we associate with “bad posture.” Does this consume less energy? Yes. But in doing so, it puts a variety of systems—not just muscles, but even the respiratory system—at a disadvantage.

(Tellingly enough, there’s an important relationship between metabolic and aerobic power and the capability to maintain an upright posture).

Achilles_Statue_in_Corfu_by_MaJr12
Good Posture, brought to you by Achilleus

If we try doing a front squat with bad posture, we’ll set ourselves up for either a plateau or an injury. In effect, we have to resolve this problem by increasing the body’s energy consumption (reducing efficiency) in order to produce the alignment that allows us to correctly perform this movement under load.

Ultimately, however, efficiency is extremely important in sports such as running. This is known as running economy. Elite runners tend to have great running economy, meaning that they use less energy to cover a certain distance.

There are a few ways that running economy can be improved: one is to increase aerobic power. Six times as much energy can be gotten from molecules of glucose that are burned aerobically rather than anaerobically.

Another way is to increase neuromuscular synchronization and power. A knee that collapses in or hip that collapses up during the running stride is known as a “power leak,” meaning that muscles are misaligned and therefore pushing the body up, laterally, or rotationally instead of contributing to driving it forward.

Yet another way to increase running economy is to become smaller. This includes having reduced fat percentage and increased muscle percentage, but it encompasses more than that: runners that are volumetrically smaller have a much easier time traveling distance than runners that are volumetrically larger. Why? If you’re taller, not only will your bones and muscles have to be thicker (in order to retain the same proportions), but then your organs, especially your heart and circulatory system, will be working that much more to pump blood from your toes to your brain.

It doesn’t matter what aspect of running economy you’re talking about. Not only does the economical runner expend less total energy than the non-economical runner, but a greater percentage of total energy expenditure ends up going towards crossing the finish line rather than being lost in vertical, lateral, or torsional oscillation, power leaks, or greater metabolic upkeep.

The question of efficiency or running economy should always be asked in tandem with the question of athletic performance: is seeking some initial efficiency—for example, bowing my upper back because I’m tired—going to hinder my athletic performance or development?

Personally, I believe that “good form” for any athletic activity is “that form which allows us to express greater athletic power.” That’s how it’s defined across martial arts, baseball, the decathlon, and marbles. That should be how we define it in running too.

When a forefoot strike results from all the correct physiological and gait factors, a greater proportion of the stance will be spent on the forefoot, meaning that a greater proportion of the stance phase will go into force production. The stance is shorter overall, and the speed is faster. Is this stride type more costly (and does it produce its own set of injuries)? Maybe, possibly. Sure.

Do certain distances place such a burden on people’s endurance—even that of elite athletes—that they opt out of the “power producing” stride type completely? That’s the billion-dollar question, and given the answer, we might find that it is completely within reason to adopt a hybrid stride or even a heel strike at certain distances, full stop. (Or, you know, we could just walk).

Great form (and great technique) are expenses of energy, both immediate and in terms of time and training. But achieving them will facilitate efficiency at a higher athletic level: we’ll expend more energy, but we’ll be able to apply a greater percentage of that energy towards the achievement of our athletic goals.