Tag Archives: athletic achievement

My reflection on The Pose Method’s principles and processes.

The supermajority of runners—of people in general—are fond of saying that there is no one way to run. We accept that there are specific techniques for swimming, throwing a ball, swinging a golf club, doing a spin kick, squatting a barbell, and even for properly flipping a goddamn omelet. We accept that adhering to these techniques will make us better at the motion, and less likely to be injured.

(I’ll bet you a hundred bucks that you’ll get carpal tunnel if you flip an omelet wrong one time too many).

But this doesn’t apply to running. When it comes to running, everyone’s different.

Or so they say.

Dr. Nicholas Romanov, founder of The Pose Method, disagrees. After extensive study and experimentation, he identified the key similarities between everyone’s running style. In order for us to be able to run—to move forward consistently without falling—we have to alternate support: one leg remains on the ground, allowing the body to fall forward (instead of downward), while the other moves through the air to create new support under the body’s new location.

The biggest similarity between everyone’s form, whether we’re talking about a couch potato with a New Year’s resolution or about Usain Bolt, is this: at some moment in time, one foot will be supporting the body on the ground, while the other will be passing under the hip area (which is known in biomechanics as the general center of mass, or GCM).

This is what Dr. Romanov refers to as “pose.” How to achieve pose properly is the centerpiece of his method.

Consequently, the most important difference between that couch potato and Bolt—but not the only difference, of course—is that Bolt takes far greater advantage of the time spent in pose.

When we look at Usain Bolt’s running, we recreational runners and non-athletes get the sense that we are looking at genius. We may not be able to put our finger on this genius or break it down with precise words, but we recognize it as genius nevertheless.

But what we are really seeing in Bolt is a perfect running pose—a masterful, yet unconscious (and possibly unknowing) execution of the principles laid out by The Pose Method.

The Pose Method isn’t a “running style.” Dr. Romanov emphasizes this heavily—he didn’t “invent” the running pose any more than the squat and the snatch were invented. These weightlifting forms were discovered: the squat is the best way to lift weight on the shoulders, and the snatch is the best way to propel weight vertically from the ground. The running pose is also a discovery: it is the best way to harness the force of gravity to create horizontal displacement of the upright human body.

The method part of the name refers to a recipe built around the simplest, most efficient exercises that can help us replicate pose effectively and consistently across distance and time.

To truly understand The Pose Method, it’s critical to grasp the role that gravity plays in running. On the surface, it seems that gravity has little benefit beyond helping us return to the ground so that we can once again propel ourselves forward. Gravity is a downforce. We all know this. So how, then, can it help us move horizontally?

Because of the support phase, that is, the running pose itself. When one foot is on the ground, and we shift our center of gravity even slightly forward of that foot, we begin to fall. But we can look at it in a different way: falling forward is really a rotation, at least at first. When we run, the support foot acts as the vertex of an angle between our hips and the direction of gravity. When we’re perfectly upright, that angle is zero. As we shift our weight forward, that angle increases: our hips (along with the rest of our upper body) travel forward, while our support foot remains behind.

Effectively, we’ve converted the downward force of gravity into a rotational force. The greater the angle, the greater the force.

Of course, if we just keep increasing that angle without doing anything else, we’ll fall on our face. But we don’t—our body has all the necessary countermeasures in place: they’re called reflexes. In order to catch ourselves, we reach towards the ground with the other foot.

Ideally, that foot should land directly under the center of mass. This is the case, at least, in Usain Bolt’s running (and that of a few other luminaries, such as Galen Rupp). In most of us, the foot lands somewhere else.

If our foot lands in front of us, momentum has to carry our center of mass forward, until arrives on top of the foot. Only then can we begin to use gravity to advance. And if it takes too long for our heel to lift, we are not falling forward in the earnest—heel lift is a critical component of any athletic movement. That’s why it is so emphasized across sports.

To the degree that our foot lands ahead of us, we are wasting time. And to the degree that our heel delays from lifting, we are losing power.

In order to prevent each of these two issues, the swing leg (which is off the ground) must remain under the center of mass for the entire time that the weight of the body is supported by the other leg. While one forefoot is on the ground, the other foot must remain under the hips.

The array of injuries and problems with the running of most runners are caused by deviations from pose. When we see a master runner—when we recognize genius—we are unconsciously recognizing that these few conditions are being properly satisfied. All other nuances of form are by-products of these few facts.

Dr. Romanov likes to say that we all run in pose. Regardless of our race, creed, gender, or ethnicity, we’ve all gone through this position every step of every run we’ve ever run. What differs between runners is whether we achieve pose—and retain it—effectively.

Whether there is a proper way to run is not a question. Whether there is a way to find it is not a question. The only real question is whether we hold to old, absurd paradigms—that running is the only sport where there is no One Right Way—or whether we engage our time and efforts in mastering principles which have already been discovered and already been presented as the core teachings of The Pose Method of running.

Eli Goldratt’s Theory of Constraints in running coaching: can we reliably create sustained athletic achievement in runners?

“Sustained athletic achievement” is a phrase seldom heard when talking about runners. By now, nobody needs to quote the staggering injury statistics in Western running populations: According to an epidemiological study, there are 2.5 to 12.1 injuries for every 1000 hours of running. 20 to 70% of those injuries are recurring, and 30 to 90% of those injuries result in a reduction in training.

Is this because running is inherently injurious? Probably not—and some would argue that we’re in no position to know: the rates of injury aren’t due to the fact that we’re running, but instead due to the fact that we’re running unprepared. In Movement, Gray Cook writes that “many times, the activity gets the blame when the blame should be placed on the poor foundation the innocent activity was placed upon.”

Let’s translate this: are our calves mobile and strong? Are our hips stable? Are our flexors and extensors working well together with our abductors and adductors? These are questions that runners typically only ask themselves after an injury or ten.

Whenever we train an athletic activity such as running, it’s important to figure out what might hold our training back, rather than just going out to hit the pavement and hope for the best. There is a theoretical framework that may provide us with a systematic way of finding solutions to these widespread problems: Eli Goldratt’s Theory of Constraints (TOC).

At the general level, the Theory of Constraints consists of 5 steps:

  1. Identify the system’s constraint.
  2. Decide how to exploit the system’s constraint.
  3. Subordinate everything else to the above decision.
  4. Elevate the system’s constraint.
  5. Find the new constraint.

In Critical Chain: the theory of constraints applied to project management, Graham K. Rand writes: “The system’s constraint is the part of the system that constrains the objective of the system.”

Overuse injuries in running are rarely generalized. In other words, it’s always something specific: either a bad knee, or shin splints, or plantar fasciitis is stopping us. In other words, that’s the constraint that doesn’t let us log more miles.

A lot of us are really good at doing the first two steps. We already identified the constraint (at least superficially speaking)—say it was a tight IT band. Then comes step two: deciding how to exploit the system’s constraint. We roll out our tight IT band, so that we can log as many miles as possible.

But a lot of us don’t get past step 2: we keep logging miles and more miles, until our IT band is so sore that we can’t run at all. Doing step 3 would mean figuring out how many miles we can run without injury. Here’s the problem: if we actually did an honest assessment, the answer would typically be “not many.” Certainly not enough to train for a marathon, probably just enough to train for a 10k.

Which brings up to step 4. We’re trying to train for a marathon—or train for a fast 5k—and this IT band doesn’t let us go far or fast. What do we need to do? Elevate the system’s constraint. Otherwise, that tight IT band won’t let us develop the speed or endurance we need for our event.

When you look at the problem of athletic development broadly, it doesn’t make much sense to spend time and effort developing endurance when a problematic knee or IT band isn’t letting you progress.

In Critical Chain, Eli Goldratt writes: “What property typifies the chain? It is the strength of the chain. If one link breaks, just one link, the chain is broken. The strength of the chain drops to zero.”

This is the tired story of overuse injuries and recurring injury in runners. We often sideline ourselves by running through injury. We break the chain, instead of strengthening it.  We try to increase our endurance, when ironically our present endurance may be greater than we know—but we can’t experience it, given that the system is constrained by a malfunctioning part.

We should always focus on the weak link. “Remember,” Goldratt writes. “You are not really interested in my link. You are interested in the chain. If I made my link stronger, how much did I improve the strength of your chain? Nothing. Absolutely nothing.”

In previous posts, I’ve alluded to the possibility that “the plateau” may be deeply related to the flawed thinking that Goldratt attempts to correct: perhaps the case is that we’re training endurance when the constraint of the system is strength, or hip stability. We don’t see gains in endurance because we don’t address the constraint, and we perceive that we “plateaued.”

What’s the problem? Why did we miss the constraint?

The problem, Goldratt proposes, may be in our ideas and in our personal culture. A typical assumption in project management is that “the only way to achieve good global performance (is through good local performance everywhere.” Although this idea seems to make sense at face value, Goldratt disagrees: “The fact that so many managers and almost all our systems are based on this assumption is regarded by TOC as the core problem…”

Project management and athletic training are not so far apart: the same problem is present in both. Look at your training plan.Most athletic programs look for good local performance everywhere. Chances are that your training plan is similar to many other training plans: do fartlek, strength training, endurance, cardio.  The mainstream philosophy is to hit every side of the problem, all at once. Of course this works, in the sense that the body develops, but does it work well?

By the best standards, probably not. And if you keep getting sidelined by injury, certainly not.

I hope to have shown that the principles provided by the Theory of Constraints can be easily adapted to create a system for athletes and coaches, by which they can jointly achieve two objectives that are typically at odds with each other: injury prevention/management and athletic development. Applying the Theory of Constraints to athletic coaching may allow us to define athletic development in such a way that these two objectives cease to be in conflict. I believe that on a deep level, this conflict of interests is the likeliest culprit of the staggering running injury statistics. Settling it will benefit athletes, coaches, and the running culture in general.

I’ll devote my next post to fleshing out the details of this conflict of interest (and how to resolve it).

How philosophy powers athletic achievement: a personal anecdote.

Earlier this summer I ran the HTC race in Oregon, a well-known, hundred-plus mile relay. I was part of an excellent and enthusiastic Reed College team. I was given the more . . . motivating, if you will, leg of the race. It consisted of a set of three stretches—legs 5, 17, and 24—totaling about 21 miles. The last stretch included an 850-ft hill. I engage with running as a form of expression, and not a form of propulsion. Nowhere does the contrast between expression and propulsion become more stark than when a single group of people—each and every person with their own metaphors, mental models, and training histories—run together up a hill in heat that closes in on the double digits.

As was the case on that particular hill.

Now, I’m not the fastest runner out there. And, I gotta say: should precedent and probability have the final say, I’ll never be. But over the years, I have developed my running to be quite effortless—and therefore, quite fast. I like to run without effort, and fully engaged, like a well-oiled machine where every tiny part is playing its part in exactly the right way, all the pistons moving in perfect synchrony, all of the forces which course through my body coursing through it in exactly the right vectors. This is a story about what effortlessness means, what it does for you, and what it feels like. But more importantly I share what are, in my opinion, the most basic ideas of how to replicate it it.

Continue reading How philosophy powers athletic achievement: a personal anecdote.